OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 36, Iss. 13 — May. 1, 1997
  • pp: 2886–2892

Thickness and uniformity of fluorocarbon polymer film dynamically coated inside silver hollow glass waveguides

You Wang, Akihito Hongo, Yuji Kato, Takehiro Shimomura, Daisuke Miura, and Mitsunobu Miyagi  »View Author Affiliations


Applied Optics, Vol. 36, Issue 13, pp. 2886-2892 (1997)
http://dx.doi.org/10.1364/AO.36.002886


View Full Text Article

Acrobat PDF (305 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The variation in properties of a fluorocarbon polymer (FCP) film during a drying–curing process is investigated for fabricating FCP-coated silver (FCP/Ag) hollow glass waveguides. A dynamic liquid-phase coating procedure is used. Through the analyses of the loss spectra of hollow waveguides made in various conditions, a relationship between the thickness of the FCP film and the coating velocity is obtained. The optimum fabrication condition is also established for producing FCP/Ag hollow glass waveguides for the mid-IR.

© 1997 Optical Society of America

Citation
You Wang, Akihito Hongo, Yuji Kato, Takehiro Shimomura, Daisuke Miura, and Mitsunobu Miyagi, "Thickness and uniformity of fluorocarbon polymer film dynamically coated inside silver hollow glass waveguides," Appl. Opt. 36, 2886-2892 (1997)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-36-13-2886


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. M. Miyagi, A. Hongo, and S. Kawakami, “An infrared waveguide for 10.6 μm wave transmission—metallic hollow waveguide with inner dielectric layers,” in Technical Digest of the Institute of Electronics and Communications Engineers (IECE, Japan, 1981), paper OQE80–128. (in Japanese)
  2. M. E. Marhic, “Mode-coupling analysis of bending losses in IR metallic waveguides,” Appl. Opt. 20, 3436–3441 (1981).
  3. M. Miyagi, A. Hongo, and S. Kawakami, “Transmission characteristics of dielectric-coated metallic waveguides for infrared transmission: Slab waveguide model,” IEEE J. Quantum Electron. QE-19, 136–145 (1983).
  4. J. A. Harrington and Y. Matsuura, “Review of hollow waveguide technology,” in Biomedical Optical Instrumentation, A. Katzier, A. Harrington, and D. M. Harris, eds., Proc. SPIE 2396, 4–14 (1995).
  5. A. Hongo, K. Morosawa, K. Matsumoto, T. Shiota, and T. Hashimoto, “Transmission of kilowatt-class CO2 laser light through dielectric-coated metallic hollow waveguides for material processing,” Appl. Opt. 31, 5114–5120 (1992).
  6. Y. Matsuura and M. Miyagi, “Er:YAG, CO, and CO2 laser delivery by ZnS-coated Ag hollow waveguides,” Appl. Opt. 32, 6598–6601 (1993).
  7. C. E. Morrow and G. Gu, “Fiberlase: a monolithic hollow waveguide,” in Biomedical Fiber Optic Instrumentation, J. A. Harrington and D. M. Harris, A. Katzir, and F. P. Milanovich, eds., Proc. SPIE 2131, 18–27 (1994).
  8. I. Gannot, S. Schrunder, J. Dror, A. Inberg, T. Ertl, J. Tschepe, G. J. Muller, and N. Croitoru, “Flexible waveguides for Er:YAG laser radiation delivery,” IEEE Trans. Biomed. Eng. 42, 967–972 (1995).
  9. Y. Matsuura and J. A. Harrington, “Infrared hollow waveguides fabricated by chemical vapor deposition,” Opt. Lett. 20, 2078–2080 (1995).
  10. R. K. Nubling and J. A. Harrington, “Hollow waveguide delivery systems for high-power, industrial CO2 lasers,” Appl. Opt. 35, 372–380 (1996).
  11. Y. Kato and M. Miyagi, “Fabrication of nontoxic and durable fluorocarbon-coated silver waveguides for the infrared: a new approach,” in Biomedical Optoelectronic Devices and Systems, N. L. Croitoru and R. Pratesi, eds., Proc. SPIE 2084, 27–37 (1994).
  12. Y. Kato, M. Osawa, M. Miyagi, S. Abe, M. Aizawa, and S. Onodera, “Loss characteristics of polyimide-coated silver hollow glass waveguides for the infrared,” Electron. Lett. 31, 31–32 (1995).
  13. M. Osawa, Y. Kato, T. Watanabe, M. Miyagi, S. Abe, M. Aizawa, and S. Onodera, “Fabrication of fluorocarbon polymer-coated silver hollow glass waveguides for the infrared by the liquid-phase coating method,” Opt. Lasers Technol. 27, 393–396 (1995).
  14. T. Abel, J. Hirsch, and J. A. Harrington, “Hollow waveguides for broadband infrared transmission,” Opt. Lett. 19, 1034–1036 (1994).
  15. J. H. Lowry, J. S. Mendlowitz, and N. S. Subramanian, “Optical characteristics of Teflon AF fluoroplastic materials,” Opt. Eng. 31, 1982–1986 (1992).
  16. M. Saito, T. Gojo, Y. Kato, and M. Miyagi, “Optical constants of polymer coating in the infrared,” Infrared Phys. Technol. 36, 1125–1129 (1995).
  17. M. Miyagi and S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984).
  18. Y. Matsuura, T. Abel, and J. A. Harrington, “Optical properties of small-bore hollow glass waveguides,” Appl. Opt. 34, 6842–6847 (1995).
  19. Y. Matsuura, M. Saito, M. Miyagi, and A. Hongo, “Loss characteristics of circular hollow waveguides for incoherent infrared light,” J. Opt. Soc. Am. A 6, 423–427 (1989).
  20. A. Hongo, M. Miyagi, Y. Kato, M. Suzumura, S. Kubota, Y. Wang, and T. Shimomura, “Fabrication of dielectric-coated silver hollow waveguides for the infrared by liquid-flow coating method,” in Biomedical Fiber Optics, A. Katzir and J. A. Harrington, eds., Proc. SPIE 2677, 55–63 (1996).
  21. E. D. Palik, Handbook of Optical Constants of Solids, 1st ed. (Academic, Orlando, Fla., 1985), Part 2, pp. 350–351.
  22. M. Bass, Handbook of Optics, Vol. 1 (McGraw-Hill, New York, 1995), Part 11, p. 42.12.
  23. S. Tomotika, “On the instability of a cylindrical thread of a viscous liquid surrounded by another viscous fluid,” Proc. R. Soc. London Ser. A 150, 322–337 (1935).
  24. R. N. Marchessault and S. G. Mason, “Flow of entrapped bubbles through a capillary,” Ind. Eng. Chem. 52, 79–84 (1960).
  25. M. Novotny, K. D. Bartle, and L. Blomberg, “Dependence of film thickness on column radius and coating rate in preparation of capillary columns for gas chromatography,” J. Chromatogr. 45, 469–471 (1969).
  26. K. D. Bartle, “Film thickness of dynamically coated open-tubular glass columns for gas chromatography,” Anal. Chem. 45, 1831–1836 (1973).
  27. F. Fairbrother and A. E. Stubbs, “Studies in electro-endosmosis. Part VI. The ‘bubble-tube’ method of measurement,” J. Chem. Soc. 1, 527–529 (1935).
  28. L. W. Beerstecher, Fachgebiet Instrumente, Siemens, Fabrikstrasse 31, D-64625, Bensheim, Germany.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited