OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 36, Iss. 13 — May. 1, 1997
  • pp: 2917–2922

Raman scattering as a characterization tool for epitaxial GaN thin films grown on sapphire by turbo disk metal-organic chemical vapor deposition

Zhe Chuan Feng, Matthew Schurman, Richard A. Stall, Mark Pavlosky, and Andrew Whitley  »View Author Affiliations

Applied Optics, Vol. 36, Issue 13, pp. 2917-2922 (1997)

View Full Text Article

Acrobat PDF (263 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Thin layers of GaN, a few micrometers thick, grown on sapphire substrate, are the basic structure in the rapidly developing GaN-based blue optoelectronics devices. We are looking for nondestructive, effective, and convenient characterization tools for GaN/sapphire. Ordinary Raman scattering measurements have limited use because strong Raman signals from the sapphire substrate overwhelm the GaN Raman features. We describe two techniques for making commercial laser Raman systems serve as convenient characterization tools for GaN/sapphire. One uses a near right-angle laser beam incidence, and the other uses microscope lens focusing. In these two ways the detected GaN Raman signals are much stronger than sapphire features, and correct assignments can be made quickly.

© 1997 Optical Society of America

Zhe Chuan Feng, Matthew Schurman, Richard A. Stall, Mark Pavlosky, and Andrew Whitley, "Raman scattering as a characterization tool for epitaxial GaN thin films grown on sapphire by turbo disk metal-organic chemical vapor deposition," Appl. Opt. 36, 2917-2922 (1997)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. R. F. Davis, “III–V nitrides for electronic and optoelectronic applications,” Proc. IEEE 79, 702–712 (1991).
  2. S. Strite and H. Morkoc, “GaN, AlN, and InN: a review,” J. Vac. Sci. Technol. B10, 1237–1266 (1992); H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, “Large-band-gap SiC, III–V nitride, and II–VI ZnSe-based semiconductor device technologies,” J. Appl. Phys. 76, 1363–1398 (1994).
  3. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimato, “InGaN-based multi-quantum-well-structure laser diodes,” Jpn. J. Appl. Phys. 35, L74–L76 (1996).
  4. C. Yuan, T. Salagai, A. Gurary P. Zawadzki, C. S. Chern, W. Kroll, R. A. Stall, Y. Li, M. Schurman, C.-Y. Hwang, W. E. Mayo, Y. Lu, and S. J. Pearton, “High quality p-type GaN deposition on c-sapphire substrates in a multiwafer rotating-disk reactor,” J. Electrochem. Soc. 142, L163–L165 (1995).
  5. C. Yuan, T. Salagai, A. Gurary, A. G. Thompson, W. Kroll, R. A. Stall, C.-Y. Hwang, M. Schurman, Y. Li, W. E. Mayo, Y. Lu, S. Krishnankutty, I. K. Shmagin, R. M. Kolbas, and S. J. Pearton, “Investigation of n- and p-type doping of GaN during epitaxial growth in a mass-production scale multiwafer-rotating-disk reactor,” J. Vac. Sci. Technol. B 13, 2075–2080 (1995).
  6. D. Manchon, Jr., A. S. Barker, Jr., P. J. Dean, and R. B. Zetherstrom, “Optical studies of the phonons and electrons in gallium nitride,” Solid State Commun. 8, 1227–1231 (1970).
  7. G. Burns, F. Dacol, J. C. Marinace, B. A. Scott, and E. Burstein, “Raman scattering in thin film waveguides,” Appl. Phys. Lett. 22, 356–357 (1973); A. Cingolani, M. Ferrara, M. Lugara, and G. Scamarcio, “First-order Raman scattering in GaN,” Solid State Commun. 58, 823–824 (1986).
  8. P. Perlin, C. Jauberthie-Carillon, J. P. Itie, A. San Miguel, I. Grzegory, and A. Polian, “Raman scattering and x-ray-absorption spectroscopy in gallium nitride under high pressure,” Phys. Rev. B 45, 83–89 (1992).
  9. W. J. Meng and T. A. Perry, “Strain effects in epitaxial GaN grown on AlN-buffered Si(111),” J. Appl. Phys. 76, 7824–7828 (1994).
  10. T. Kozawa, T. Kachi, H. Kano, Y. Taga, M. Hashimoto, N. Koide, and K. Manabe, “Raman scattering from LO phonon–plasmon coupled modes in gallium nitride,” J. Appl. Phys. 75, 1098–1101 (1994).
  11. M. Giehler, M. Ramsteiner, O. Brandt, H. Yang, and K. H. Ploog, “Optical phonons of hexagonal and cubic GaN studied by infrared transmission and Raman spectroscopy,” Appl. Phys. Lett. 67, 733–735 (1995).
  12. S. J. Sheih, K. T. Tsen, D. K. Ferry, A. Botchkarev, B. Sverdlov, A. Salvador, and H. Morkoc, “Electron–phonon interactions in the wide band-gap semiconductor GaN,” Appl. Phys. Lett. 67, 1757–1759 (1995).
  13. S. Murugkar, R. Merlin, A. Botchkarev, A. Salvador, and H. Morkoc, “Second order Raman spectroscopy of the wurtzite form of GaN,” J. Appl. Phys. 77, 6042–6043 (1995).
  14. T. Azuhata, T. Sota, K. Suzuki, and S. Nakamura, “Polarized Raman spectra in GaN,” J. Phys.: Condensed Matter 7, L129–L133 (1995).
  15. H.-R. Kuo, M.-S. Feng, J.-D. Guo, and M.-C. Lee, “Raman scattering of Se-doped gallium nitride films,” Jpn. J. Appl. Phys., Part 1 34, 5628–5632 (1995).
  16. A. Tabata, R. Enderlein, J. R. Leite, S. W. da Silva, J. C. Galzerani, D. Schikora, M. Kloidt, and K. Lischka, “Comparative Raman studies of cubic and hexagonal GaN epitaxial layers,” Appl. Phys. Lett. 79, 4137–4140 (1996).
  17. S. P. S. Porto and R. S. Krishnan, “Raman effect of corundum,” J. Chem. Phys. 47, 1009–1012 (1967).
  18. R. Zhang, K. Yang, L. H. Qin, B. Shen, H. T. Shi, Y. Shi, S. L. Gu, Y. D. Zheng, Z. C. Huang, and J. C. Chen, “Optical properties of GaN film grown by metal-organic chemical-vapor deposition,” J. Vac. Sci. Technol. A 14, 840–843 (1996).
  19. H. Y. Zhang, X. H. He, Y. H. Shih, M. Schurman, Z. C. Feng, and R. A. Stall, “Waveguide study and refractive indices of GaN Mg epitaxial film,” Opt. Lett. 21, 1529–1531 (1996).
  20. E. Ejder, “Refractive index of GaN,” Phys. Status. Solidi A 6, 445–448 (1971).
  21. F. Gervais, “Aluminum Oxide (Al2 O3),” in Handbook of Optical Constants of Solids II, E. D. Palik, ed. (Academic, Boston, 1991), pp. 761–774.
  22. S. Nakashima and M. Hangyo, “Characterization of semiconductor materials by Raman microprobe,” IEEE J. Quantum Electron. 25, 965–975 (1989).
  23. C. J. H. Brenan and I. W. Hunter, “Chemical imaging with a confocal scanning Fourier-transform Raman microscope,” Appl. Opt. 33, 7520–7528 (1994).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited