OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 36, Iss. 14 — May. 10, 1997
  • pp: 3043–3055

Performance comparison of ferroelectric liquid-crystal-technology-based coherent optical multichannel correlators

G. Keryer, J. L. de Bougrenet de la Tocnaye, and Ayman Alfalou  »View Author Affiliations

Applied Optics, Vol. 36, Issue 14, pp. 3043-3055 (1997)

View Full Text Article

Acrobat PDF (2251 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Our purpose is to compare two architectures when implemented with ferroelectric liquid-crystal technology: the conventional VanderLugt and joint transform correlators. The architectures are compared in the single-correlation and multichannel cases. The analysis covers both theoretical aspects and practical considerations regarding implementation. Specifications for a multichannel correlator design, including considerations of both spatial light modulators and architecture configurations, are discussed. Experimental results are presented for both architectures. Finally, the benefit resulting from extension to multichannel operation is discussed in terms of both multiplexing and algorithmic capabilities.

© 1997 Optical Society of America

G. Keryer, J. L. de Bougrenet de la Tocnaye, and Ayman Alfalou, "Performance comparison of ferroelectric liquid-crystal-technology-based coherent optical multichannel correlators," Appl. Opt. 36, 3043-3055 (1997)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. Y. Pétillot, “Vers une implantation de corrélateurs optiques temps réels,” Ph.D. dissertation (Université de Bretagne Occidentale, France, March 1996).
  2. S.A. Serati, T. K. Ewing, R. A. Serati, K. M. Johnson, and D. M. Simon, “Programmable 128 × 128 ferroelectric-liquid-crystal spatial-light-modulator compact correlator,” in Optical Pattern Recognition IV, D. P. Casasent, ed., Proc. SPIE 1959, 55–68 (1993).
  3. L. Guibert, G. Keryer, A. Servel, M. Attia, H. S. MacKenzie, P. Pellat-Finet, and J. L. de Bougrenet de la Tocnaye, “On-board optical joint transform correlator for real-time road sign recognition,” Opt. Eng. 34, 135–143 (1995).
  4. H. J. Caulfield and R. Haimes, “Generalized matched filtering,” in Optical Pattern Recognition, D. P. Casasent, ed., Proc. SPIE 201, 115–119 (1979).
  5. B. V. K. Vijaya Kumar, “Tutorial survey of composite filter designs for optical correlators,” Appl. Opt. 31, 4773–4801 (1992).
  6. Y. Pétillot, L. Guibert, and J. L. de Bougrenet de la Tocnaye, “Fingerprint recognition using a partially rotation invariant composite filter in a FLC joint transform correlator,” Opt. Commun. 126, 213–219 (1996).
  7. T. D. Wilkinson, Y. Pétillot, R. J. Mears, and J. L. de Bougrenet de la Tocnaye, “Scale-invariant optical correlators using ferroelectric liquid-crystal spatial light modulators,” Appl. Opt. 34, 1885–1890 (1995).
  8. R. Moignard, E. Daniel, P.Cambon, and J. L. de Bougrenet de la Tocnaye, “Design of a silicon VLSI/FLC smart light valve for parallel optical information processing,” in Proceedings of the Eighth EOS Workshop on Optics in Computing (European Optical Society, Orsay, France, 1992), 3–6.
  9. T. D. Wilkinson, “The binary phase only matched filter,” Ph.D. dissertation (Cambridge U. Engineering, Cambridge, 1995.
  10. B. Javidi, “Nonlinear joint power spectrum based optical correlation,” Appl. Opt. 28, 2358–2367 (1989).
  11. A. Sneh, J. Y. Liu, and K. M. Johnson, “High-speed analog refractive-index modulator that uses a chiral smectic liquid crystal,” Opt. Lett. 15, 305–307 (1994).
  12. L. Le Bourhis, J. Angele, and L. Dupont, “Gray scale optically addressed spatial light modulator using twisted ferroelectric liquid crystals,” Ferroelectrics 181, 1099–1108 (1996).
  13. J. L. de Bougrenet de la Tocnaye and L. Dupont, “Complex amplitude modulation by use of liquid-crystal spatial light modulators,” Appl. Opt. 36, 1730–1741 (1997).
  14. B. Javidi and C. J. Kuo, “Joint transform image correlator using a binary spatial light modulator in the Fourier plane,” Appl. Opt. 27, 663–665 (1988).
  15. A. Kohler, B. Fracasso, P. Ambs, J. L. de Bougrenet de la Tocnaye, “Joint transform correlator using nonlinear ferroelectric crystal spatial light modulator,” in Optical Information Processing Systems and Architectures III, B. Javidi, ed., Proc. SPIE 1564, p 236–243 (1991).
  16. G. Keryer, “Etude de corrélateurs optiques á corrélation jointe mono ou multicanaux: application á la reconnaissance des formes,” Ph.D. dissertation (University of Paris XI, Orsay, France, 1996).
  17. A. VanderLugt, Optical Signal Processing (Wiley, New York, 1992).
  18. D. Joyeux and S. Lowenthal, “Optical Fourier transform: what is the optimal setup?,” Appl. Opt. 21, 4368–4372 (1982).
  19. H. R. Arsenault, “Conditions for space invariance in optical data processors used with coherent or noncoherent light,” Appl. Opt. 11, 2228–2233 (1972).
  20. S. Sinzinger and M. Testorf, “Transition between diffractive and refractive micro-optical components,” Appl. Opt. 34, 5970–5976 (1995).
  21. E. Hecht, Optics, 2nd ed. (Addison-Wesley, Reading, Mass., 1987).
  22. J. L. de Bougrenet de la Tocnaye and J. R. Brocklehurst, “Parallel access read/write memory using an optically addressed ferroelectric spatial light modulator,” Appl. Opt. 30, 179–180 (1991).
  23. W. A. Crossland, M. J. Birch, A. B. Davey, and D. G. Vass, “Active backplane spatial light modulator using chiral liquid crystal,” in Liquid Crystal Materials, Devices, and Applications, P. S. Drzaic and U. Efron, eds., 7.jl Proc. SPIE 1665, 114–127 (1992).
  24. P. D. Gianino and C. L. Woods, “Effects of SLM opaque dead zones on optical correlation,” Appl. Opt. 31, 4025–4033 (1992).
  25. D. J. McKnight, K. M. Johnson, K. M. Johnson, and R. A. Serati, “256 × 256 liquid-crystal-on-silicon spatial light modulator,” Appl. Opt. 39, 2775–2783 (1994).
  26. D. C. Burns, I. Underwood, J. Gourlay, A. O’Hara, and D. G. Vass, “A 256 × 256 SRAM- Xor pixel ferroelectric liquid crystal over silicon spatial light modulator,” Opt. Commun. 119, 623–632 (1995).
  27. J. L. Tribillon, “Calcul et réalisation de grilles de phase ou de transparence binaire destinées á la multiplication d’images,” Ph.D. dissertation (Université de Besançon, Faculté des Sciences et Techniques, Besançon, France, 1973).
  28. Q. Tang and B. Javidi, “Technique for reducing the redundant and self-correlation terms in joint transform correlators,” Appl. Opt. 32, 1911–1918 (1993).
  29. J. Campos, M. Montes-Usategui, I. Juvells, and M. J. Yzuel, “On the necessity of multiple filters in optical pattern recognition,” in Euro-American Workshop on Optical Pattern Recognition, B.Javidi and P. Refregier, eds. (SPIE Press, Bellingham, Wash., 1994), PM12, 137–166.
  30. R. C. Chevallier, “Associative memory for image classification: new interleaved coding of 4-dimensional information in a plane,” Int. J. Opt. Comput. 1, 71–87 (1990).
  31. G. Keryer and J. L. de Bougrenet de la Tocnaye, “A multichannel joint transform correlator,” Opt. Commun. 118, 102–113 (1995).
  32. X. Yang and D. A. Gregory, “Multichannel optical correlator based on a mutually incoherent microlaser array,” Opt. Lett. 20, 2405–2408 (1995).
  33. J. H. Feng, G. F. Chin, M. X. Wu, S. H. Yan, and Y. B. Yan, “Multiobject recognition in a multichannel joint-transform correlator,” Opt. Lett. 20, 82–84 (1995).
  34. G. Keryer, L. Guibert, P.Pellat-Finet, and J. L. de Bougrenet de la Tocnaye, “Corrélateur joint optique appliqué á la détection multicible,” in GRETSI’91: Treizième Colloque GRETSI sur la Traitement du Signal et des Images (Juan-les-Pins, France, 1991). pp. 1193–1196.
  35. T. J. Grycewicz, “Applying time modulation to the joint transform correlator,” Opt. Eng. 33, 1813–1819 (1994).
  36. H. J. Caulfield, “Parallel n 4 weighted optical interconnects,” Appl. Opt. 26, 4039–4040 (1987).
  37. B. Fracasso and J. L. de Bougrenet de la Tocnaye, “Node-based reconfigurable volume interconnections. 1. Principles and optical design,” Applied Opt. 33, 5348–5362 (1994).
  38. M. Barge, H. Hamam, Y. Defosse, R. Chevallier, and J. L. de Bougrenet de la Tocnaye, “Les illuminateurs de tableaux utilisant des éléments optiques diffractifs,” J. Opt., (Paris) 27, 151–170 (1996).
  39. H. Dammann and K. Gortler, “High-efficiency in-line multiple imaging by means of multiple phase holograms,” Opt. Commun. 3, 312–315 (1971).
  40. H. Dammann and E. Klotz, “Coherent optical generation and inspection of two-dimensional periodic structures,” Opt. Acta 24, 505–515 (1977).
  41. M. Barge, “Etudes, réalisations et utilisations de composants diffractifs gravés pour les interconnexions optiques,” Ph.D. dissertation (Ecole Nationale Supérieure des Télécommunications de Paris, Paris, 1995).
  42. M. A. Seldowitz, J. P. Allebach, and D. W. Sweeney, “Synthesis of digital holograms by direct binary search,” Appl. Opt. 26, 2788–2798 (1987).
  43. Y. Kobayashi, T. Takemori, N. Mukohzaka, N. Yoshida, and S. Fukushima, “Real-time velocity measurement by use of a speckle-pattern correlation system that incorporates a ferroelectric liquid-crystal spatial light modulator,” Appl. Opt. 33, 2785–2794 (1994).
  44. A. Alfalou, G. Keryer, and J. L. de Bougrenet de la Tocnaye, “Comparison of the performances of single and multichannel binary phase-only matched filters,” in Optical Pattern Recognition VII, D. P. Casasent and T.-H. Chao, eds., Proc. SPIE 2752, 92–100 (1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited