OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 36, Iss. 14 — May. 10, 1997
  • pp: 3070–3078

Compact optical imaging system for arrays of optical thyristors

Andrew Kirk, Alain Goulet, Hugo Thienpont, Neil McArdle, Karl-Heinz Brenner, Maarten Kuijk, Paul Heremans, and Irina Veretennicoff

Applied Optics, Vol. 36, Issue 14, pp. 3070-3078 (1997)
http://dx.doi.org/10.1364/AO.36.003070


View Full Text Article

Acrobat PDF (1223 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A compact and modular optical system that employs gradient-refractive-index rod lenses to image arrays of Lambertian sources is characterized both experimentally and by ray-tracing simulations. A hybrid optical system that incorporates additional microlens arrays to reduce transmittance losses and aberrations is also modeled, and the two systems are compared.

© 1997 Optical Society of America

Citation
Andrew Kirk, Alain Goulet, Hugo Thienpont, Neil McArdle, Karl-Heinz Brenner, Maarten Kuijk, Paul Heremans, and Irina Veretennicoff, "Compact optical imaging system for arrays of optical thyristors," Appl. Opt. 36, 3070-3078 (1997)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-36-14-3070


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. B. Knupfer, M. Kuijk, P. Heremans, R. Vounckx, and G. Borghs, “Cascadable differential PnpN optoelectronic switch operating at 50 Mbit/s with ultrahigh optical input sensitivity,” Electron. Lett. 31, 485–486 (1995).
  2. D. A. B. Miller, M. D. Feuer, T. Y. Chang, S. C. Shunk, J. E. Henry, D. J. Burrows, and D. S. Chemla, “Field-effect transistor self-electro-optic effect device: integrated photodiode, quantum well modulator and transistor,” IEEE Photon. Technol. Lett. 1, 61–64 (1989).
  3. K. Hara, K. Kojima, K. Mitsunaga, and K. Kyuma, “AlGaAs/GaAs pnpn differential optical switch operable with 400 fJ optical input energy,” Appl. Phys. Lett. 57, 1075–1077 (1990).
  4. M. Kuijk, B. Knüpfer, P. Heremans, R. Vounckx, and G. Borghs, “Down-scaling differential pairs of depleted optical thyristors,” IEEE Photon. Technol. Lett. 7, (6), 646–648 (1995).
  5. L. G. Atkinson, D. S. Kindred, and J. R. Zinter, “Practical GRINS: Materials, design and applications,” Opt. Photon. News 6, 28–31 (1994).
  6. Selfoc Product Guide (Nippon Sheet Glass, Tsukuba, Japan, 1993).
  7. A. Kirk, H. Thienpont, A. Goulet, P. Heremans, G. Borghs, M. Kuijk, R. Vounckx, and I. Veretennicoff, “Parallel optoelectronic data transcription with fan-out between planes of PnpN optical thyristors,” IEEE Photon. Technol. Lett. 8, 464–466 (1996).
  8. N. McArdle, H. Sakaida, H. Yamamote, M. Ishikawa, “A compact dynamically interconnected parallel optoelectronic computing system,” in Proceedings of the International Conference on Optical Computing (OC '96) (Japan Society of Applied Physics, Tokyo, 1996), Vol. 1, pp. 16–17.
  9. H. De Neve, J. Blondelle, R. Baets, P. Demeester, P. Van Daele, G. Borghs, “High efficiency planar microcavity LED’s: comparison of design and experiments,” IEEE Photon. Technol. Lett. 7, 287–289 (1995).
  10. A. G. Kirk, K. Praet, and H. Thienpont, “The suitability of GRIN rod lenses for imaging arrays of PnpN optical thyristors in optoelectronic computer architectures,” in Optical Computing Vol. 10 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 68–70.
  11. K. B. Paxton and W. Streifer, “Aberrations and design of gradient index (GRIN) rods used as image relays,” Appl. Opt. 10, 2090–2096 (1971).
  12. A. W. Lohmann, “Image formation of dilute arrays for optical information processing,” Opt. Commun. 86, 365–370 (1991).
  13. Z. D. Popovic, R. A. Sprague, and G. A. Neville Connell, “Technique for monolithic fabrication of microlens arrays,” Appl. Opt. 27, 1281–1284 (1988).
  14. M. Kufner, S. Kufner, P. Lalanne, P. Pichon, and P. Chavel, “Integration of microlens and fiber holder arrays by deep proton irradiation,” in Technical Digest of the International Conference on Optical Computing (Heriot-Watt University, Edinburgh, Scotland, 1994).
  15. M. Oikawa and K. Iga, “Distributed index planar microlenses,” Appl. Opt. 21, 1052–1056 (1982).
  16. S. M. Prince, F. A. P. Tooley, and M. R. Taghizadeh, “Design, fabrication and testing of a hybrid microlens array,” in Proceedings of the EOS Topical Meeting on Microlens Arrays (European Optical Society, Orsay, France, 1995), pp. 106–109.
  17. R. A. Abram, R. W. Allen, and R. C. Goodfellow, “The coupling of light emitting diodes to optical fibres using sphere lenses,” J. Appl. Phys. 46, 3468–3474 (1975).
  18. K. Brenner and W. Singer, “Light propagation through microlenses: a new simulation method,” Appl. Opt. 32, 4984–4988 (1993).
  19. K. Hamanaka, K. Nakama, D. Arai, Y. Kusuda, T. Kishimoto, and Y. Mitsuhashi, “Integration of free-space interconnects using Selfoc lenses: optical properties of a basic unit,” in Technical Digest of the International Conference on Optical Computing (Heriot-Watt University, Edinburgh, Scotland, 1994).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited