OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 36, Iss. 15 — May. 20, 1997
  • pp: 3195–3201

Laser photoacoustic spectrometer for remote monitoring of atmospheric pollutants

M. A. Gondal  »View Author Affiliations


Applied Optics, Vol. 36, Issue 15, pp. 3195-3201 (1997)
http://dx.doi.org/10.1364/AO.36.003195


View Full Text Article

Enhanced HTML    Acrobat PDF (560 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An acoustically resonant CO2 laser photoacoustic (PA) spectrometer for remote or in situ monitoring of air pollutants has been designed. The salient features of this PA system, along with the optimization tests of various operating parameters that affect the PA signal (buffer-gas pressure, type of buffer gas, laser power, gas concentration, and acoustic modes), are described. The system has been applied for the detection of pollutants emitted from the exhaust of a car located at a remote distance. Also, an alarm system based on the PA detection technique has been built for leak detection of toxic gases at industrial complexes. The minimum detectable concentration of C2H4 and SO2 with this system is 50 parts in 1012 by volume and 50 parts in 109 by volume, respectively.

© 1997 Optical Society of America

History
Original Manuscript: July 19, 1996
Revised Manuscript: September 13, 1996
Published: May 20, 1997

Citation
M. A. Gondal, "Laser photoacoustic spectrometer for remote monitoring of atmospheric pollutants," Appl. Opt. 36, 3195-3201 (1997)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-36-15-3195


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. E. Dickinson, R. J. Cicerone, “Future global warming from atmospheric trace gases,” Nature (London) 319, 109–115 (1986). [CrossRef]
  2. J. T. Houghton, G. M. Woodwell, “Global climate change,” Sci. Am. 260, (4), 18–26 (1989). [CrossRef]
  3. J. T. Graedel, P. J. Crutzen, “The changing atmosphere,” Sci. Am. 261 (9), 28–36 (1989). [CrossRef]
  4. G. Megie, “Laser measurements of atmospheric constituents” in Laser Remote Chemical Analysis, R. M. Measure, ed., Vol. 94 of Chemical Analysis Series (Wiley, New York, 1988), pp. 333–408.
  5. J. P. Wolf, H. J. Kolsch, P. Rairoux, L. Woste, “Remote detection of atmospheric pollutants using differential absorption techniques,” in Applied Spectroscopy, W. Demtroder, M. Ingusscio, eds. (Plenum, New York, 1990), pp. 435–467. [CrossRef]
  6. H. Edner, S. Svanberg, “Differential lidar measurements of atmospheric mercury,” Water Air Soil Pollut. 56, 131–139 (1991). [CrossRef]
  7. M. W. Sigrist, “Air monitoring by spectroscopic techniques,” Vol. 127 of Chemical Analysis Series (Wiley, New York, 1994), Chap. 3, pp. 163–238.
  8. P. L. Meyer, M. W. Sigrist, “Atmospheric pollution monitoring using CO2 laser photoacoustic spectroscopy and other techniques,” Rev. Sci. Instrum. 61, 1779–1807 (1990). [CrossRef]
  9. P. Hess, “Resonant photoacoustic spectroscopy,” in Physical and Inorganic Chemistry, J. Barthel, ed., Vol. 111 of Springer Topics in Current Chemistry Series (Springer-Verlag, Berlin, 1983), pp. 1–32. [CrossRef]
  10. C. Brand, A. Winkler, P. Hess, A. Miklos, Z. Bozoki, J. Sneider, “Pulsed laser excitation of acoustic modes in open high-Q photoacoustic resonators for trace gas monitoring: results for C2H4,” Appl. Opt. 34, 3257–3266 (1995). [CrossRef] [PubMed]
  11. Ch. Horenberger, M. Konig, S. B. Rai, W. Demtroder, “Sensitive photoacoustic overtone spectroscopy of acetylene with a multipass photoacoustic cell and a colour centre laser at 1.5 µm,” Chem. Phys. Lett. 190, 171–177 (1995).
  12. P. Hess, Photoacoustic, Photothermal and Photochemical Processes in Gases, Vol. 46 of Springer Topics in Current Physics Series (Springer-Verlag, Berlin, 1989), Chap. 7, pp. 172–211.
  13. J. Davidson, J. H. Gutow, R. N. Zare, “Experimental improvements in recording gas-phase photoacoustic spectra,” J. Phys. Chem. 94, 4069–4073 (1990). [CrossRef]
  14. F. J. M. Harren, J. Reuss, E. J. Woltering, D. D. Bicanic, “Photoacoustic measurements of agriculturally interesting gases and detection of C2H4 below ppb level,” Appl. Spectrosc. 44, 1360–1368 (1990). [CrossRef]
  15. Y. H. Pao, Optoacoustic Spectroscopy and Detection (Academic, New York, 1977), Chap. 3, pp. 47–77.
  16. M. A. Gondal, “Photoacoustic trace gas analysis using CO2 and Nd:YAG lasers,” WS-412 PR, Deutsche Akademischer Austauschdienst Bonn, Germany.
  17. M. A. Gondal, “Remote monitoring of trace gases using CO2-laser photoacoustic system,” in Quantum Electronics and Laser Science Conference, Vol. 10 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), p. 244.
  18. R. Gerlach, N. M. Amer, “Brewster window and windowless spectrophones for intracavity operation,” Appl. Phys. 23, 319–326 (1980). [CrossRef]
  19. P. V. Cvijin, D. A. Gilmore, G. H. Atkinson, “Determination of sulfur dioxide by pulsed ultraviolet laser photoacoustic spectroscopy,” Anal. Chem. 59, 300–304 (1987). [CrossRef]
  20. L. T. Petkovska, B. B. Radak, S. S. Miljanic, R. T. Bailey, F. R. Cruickshank, D. Pugh, “SO2 absorption of the CO2-laser emission measured by the photoacoustic technique,” Proc. Indian Acad. Sci. 103, 401–404 (1991).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited