OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 36, Iss. 15 — May. 20, 1997
  • pp: 3253–3260

Accuracy and precision of single-pulse one-dimensional vibrational coherent anti-Stokes Raman-scattering temperature measurements

J. Jonuscheit, A. Thumann, M. Schenk, T. Seeger, and A. Leipertz  »View Author Affiliations

Applied Optics, Vol. 36, Issue 15, pp. 3253-3260 (1997)

View Full Text Article

Acrobat PDF (453 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The accuracy and precision of time-resolved one-dimensional temperature measurements using single-pulse one-dimensional N2 vibrational coherent anti-Stokes Raman scattering along a line have been investigated in air in the temperature range from 300 to 1500 K. For this, the experimental spectra were taken in a high-temperature oven at atmospheric pressure. A planar BOXCARS phase-matching geometry was employed to generate the signal along a 6.16-mm line directed perpendicular to the beam propagation. With the used imaging optics, in this direction a spatial resolution of 86 μm was achieved. Depending on the set temperature, the agreement between the thermocouple readings and the mean values of the evalutated coherent anti-Stokes Raman-scattering temperatures is better than 40 K. The applicability of this new technique for the time-resolved measurement of temperature gradients is demonstrated along a line that crosses the flame front in a premixed laminar CH4–air flame.

© 1997 Optical Society of America

J. Jonuscheit, A. Thumann, M. Schenk, T. Seeger, and A. Leipertz, "Accuracy and precision of single-pulse one-dimensional vibrational coherent anti-Stokes Raman-scattering temperature measurements," Appl. Opt. 36, 3253-3260 (1997)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed. (Abacus, Cambridge, Mass., 1996).
  2. M. Lapp and C. M. Penney, eds., Laser Raman Gas Diagnostics, (Plenum, New York, 1974).
  3. S. Lederman, “The use of laser Raman diagnostics in flow fields and combustion,” Prog. Energy Combust. Sci. 3, 1–34 (1977).
  4. A. Leipertz, “Raman processes and their application,” in Instrumentation for Combustion and Flow in Engine, D. F. G. Durao, J. H. Whitelaw, and P. O. Witze, eds. (Kluwer, Dordrecht, The Netherlands, 1989), pp. 107–122.
  5. R. Bailly, M. Pealat, and J. P. E. Taran, “Raman investigation of a subsonic jet,” Opt. Commun. 17, 68–73 (1976).
  6. M. C. Drake and G. M. Rosenblatt, “Rotational Raman scattering from premixed and diffusion flames,” Combust. Flame 33, 179–196 (1979).
  7. M. C. Drake, M. Lapp, C. M. Penney, S. Warshaw, and B. W. Gerhold, “Probability density functions and correlations of temperature and molecular concentrations in turbulent flames,” AIAA paper 81–0103 (American Institute of Aeronautics and Astronautics, New York, 1981).
  8. J. Haumann and A. Leipertz, “Giant-pulsed laser Raman oxygen measurements in a premixed laminar methane–air flame,” Appl. Opt. 24, 4509–4515 (1985).
  9. J. A. Wehrmeyer, T.-S. Cheng, and R. W. Pitz, “Raman scattering measurements in flames using a tunable KrF excimer laser,” Appl. Opt. 31, 1495–1504 (1992).
  10. S. Prucker, W. Meier, I. Plath, and W. Stricker, “The use of a flashlamp-pumped dye laser for single-pulse spontaneous Raman scattering in flames,” Ber. Bunsenges. Phys. Chem. 96, 1393–1401 (1992).
  11. E. P. Hassel, “Ultraviolet Raman-scattering measurements in flames by use of a narrowband XeCl excimer laser,” Appl. Opt. 32, 4058–4065 (1993).
  12. S. P. Nandula, T. M. Brown, R. W. Pitz, and P. A. DeBarber, “Single-pulse, simultaneous multipoint multispecies Raman measurements in turbulent nonpremixed jet flames,” Opt. Lett. 19, 414–416 (1994).
  13. G. Grünefeld, V. Beushausen, P. Andresen, and W. Hentschel, “Spatially resolved Raman scattering for multi-species and temperature analysis in technically applied combustion systems: spray flame and four-cylinder in-line engine,” Appl. Phys. B 58, 333–342 (1994).
  14. J. A. Wehrmayer, S. Yeralan, and K. S. Tecu, “Linewise Raman–Stokes/anti-Stokes temperature measurements in flames using an unintensified charge-coupled device,” Appl. Phys. B 62, 21–27 (1996).
  15. M. B. Long, D. C. Fourguette, M. C. Escoda, and C. B. Layne, “Instantaneous Ramanography of a turbulent diffusion flame,” Opt. Lett. 8, 244–246 (1983).
  16. J. Jonuscheit, T. Seeger, and A. Leipertz, “Nutzung von linearen und nichtlinearen Raman-Techniken in der Verbrennungs-diagnostik,” in Tenth Arbeitsberatung Ramanspektroskopie, Deutscher Arbeitskreis für Angewandte Spektroskopie: Fachgruppe Analytische Chemie der Gesellschaft deutscher Chemiker (Pädagogische Hochschule, Erfurt/Mühlhausen, Germany, 1995), pp. 5–8.
  17. A. C. Eckbreth, “Nonlinear Raman spectroscopy for combustion diagnostics,” J. Quant. Spectrosc. Radiat. Transfer 40, 369–383 (1988).
  18. A. B. Harvey, ed., Chemical Applications of Nonlinear Raman Spectroscopy (Academic, New York, 1981).
  19. D. A. Greenhalgh, “Quantitative CARS spectroscopy,” in Advances in Nonlinear Spectroscopy, R. H. J. Clark and R. E. Hester, eds. (Wiley, Chichester, England, 1988), Vol. 15, pp. 193–251.
  20. B. Attal-Tretout, P. Bouchardy, P. Magre, M. Pealat, and J. P. Taran, “CARS in combustion: prospects and problems,” Appl. Phys. B 51, 17–24 (1990).
  21. A. C. Eckbreth, “BOXCARS: crossed-beam phase-matched CARS generation in gases,” Appl. Phys. Lett. 32, 421–423 (1978).
  22. D. A. Murphy, M. B. Long, R. K. Chang, and A. C. Eckbreth, “Spatially resolved coherent anti-Stokes Raman spectroscopy from a line across a CH4 jet,” Opt. Lett. 4, 167–169 (1979).
  23. J. H. Stufflebeam and A. C. Eckbreth, “CARS temperature and species measurements in propellant flames,” in Non-Intrusive Combustion Diagnostics, K. K. Kuo and T. P. Parr, eds. (Begell, New York, 1994), pp. 115–131.
  24. J. B. Snow, J.-B. Zheng, and R. K. Chang, “Spatially and spectrally resolved multipoint coherent anti-Stokes Raman scattering from N2 and O2 flows,” Opt. Lett. 8, 599–601 (1983).
  25. A. Kurtz, “Multipoint CARS,” Appl. Opt. 28, 5207–5209 (1989).
  26. J. Jonuscheit, A. Thumann, M. Schenk, T. Seeger, and A. Leipertz, “One-dimensional vibrational coherent anti-Stokes–Raman-scattering thermometry,” Opt. Lett. 21, 1532–1534 (1996).
  27. D. Bradley, M. Lawes, M. J. Scott, C. G. W. Sheppard, D. A. Greenhalgh, and P. M. Porter, “Measurement of temperature PDF’S in turbulent flames by the CARS technique,” in Proceedings of the Twenty-Forth International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1992), pp. 527–535.
  28. A. Thumann, T. Seeger, and A. Leipertz, “Evaluation of two different gas temperatures and their volumetric fraction from broadband N2 coherent anti-Stokes Raman spectroscopy spectra,” Appl. Opt. 34, 3313–3317 (1995).
  29. T. Seeger and A. Leipertz, “Experimental comparison of single-shot broadband vibrational and dual broadband pure rotational coherent anti-Stokes Raman scattering in hot air,” Appl. Opt. 35, 2665–2671 (1996).
  30. D. R. Snelling, G. J. Smallwood, and R. A. Sawchuk, “Nonlinearity and image persistence of P-20 phosphor-based Intensified photodiode array detectors used in CARS spectroscopy,” Appl. Opt. 28, 3226–3232 (1989).
  31. D. R. Snelling, G. J. Smallwood, and T. Parameswaran, “Effect of detector nonlinearity and image persistence on CARS derived temperatures,” Appl. Opt. 28, 3233–3241 (1989).
  32. E. Magens, Nutzung von Rotations-CARS zur Temperatur-und Konzentrationsbestimmung in Flammen, Berichte zur Energie- und Verfahrenstechnik-BEV-, Heft 93.2 (Energie und Systemtechnik GmbH, Erlangen, Germany, 1993).
  33. M. L. Koszykowski, R. I. Farrow, and R. E. Palmer, “Calculation of collisionally narrowed coherent anti-Stokes Raman spectroscopy spectra,” Opt. Lett. 10, 478–480 (1985).
  34. R. E. Teets, “Accurate convolutions of coherent anti-Stokes Raman spectra,” Opt. Lett. 9, 226–228 (1984).
  35. H. Kataoka, S. Maeda, and C. Hirose, “Effects of laser line-width on the coherent anti-Stokes Raman spectroscopy spectral profile,” Appl. Spectrosc. 36, 565–569 (1985).
  36. L. A. Rahn, R. E. Palmer, M. L. Koszykowski, and D. A. Greenhalgh, “Comparison of rotationally inelastic collision models for Q-branch Raman spectra of N2,” Chem. Phys. Lett. 133, 513–516 (1987).
  37. T. R. Gilson, I. R. Beattie, J. D. Black, D. A. Greenhalgh, and S. N. Jenny, “Redetermination of some of the spectroscopic constants of the electronic ground state of di-nitrogen 14N2, 14N15N and 15N2 using coherent anti-Stokes Raman spectroscopy,” J. Raman Spectrosc. 9, 361–368 (1980).
  38. S. Kröll, M. Alden, P.-E. Bengtsson, C. Löfström, and R. J. Hall, “Statistics of multimode YAG laser radiation with implications for quantitative CARS in combustion diagnostics,” J. Opt. Soc. Am. B 8, 930–939 (1991).
  39. D. A. Greenhalgh and S. T. Whittley, “Mode noise in broadband CARS spectroscopy,” Appl. Opt. 24, 907–913 (1985).
  40. D. R. Snelling, T. Parameswaran, and G. J. Smallwood, “Noise characteristics of single-shot broadband CARS signals,” Appl. Opt. 26, 4298–4302 (1987).
  41. M. Alden, P.-E. Bengtsson, H. Edner, S. Kröll, and D. Nilsson, “Rotational CARS: a comparison of different techniques with emphasis on accuracy in temperature determination,” Appl. Opt. 28, 3206–3219 (1989).
  42. A. Buschmann, F. Dinkelacker, T. Schäfer, M. Schäfer, and J. Wolfrum, “Measurement of the instantaneous detailed flame structure in turbulent premixed combustion,” in Proceedings of the Twenty-Sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996).
  43. J. Göttgens and F. Mauss, “Flamet libraries—Description of the Data Format and Catalogue of Existing Libraries,” in Reduced Kinetic Mechanisms for Applications in Combustion Systems, N. Peters and B. Rogg, eds. (Springer-Verlag, Berlin, 1993), pp. 331–344.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited