OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 36, Iss. 15 — May. 20, 1997
  • pp: 3261–3270

Absolute concentration measurements of CH radicals in a diamond-depositing dc-arcjet reactor

J. Luque, W. Juchmann, and J. B. Jeffries  »View Author Affiliations


Applied Optics, Vol. 36, Issue 15, pp. 3261-3270 (1997)
http://dx.doi.org/10.1364/AO.36.003261


View Full Text Article

Enhanced HTML    Acrobat PDF (492 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Laser-induced fluorescence in the CH (BX) and CH (AX) electronic transitions is used to measure absolute number density versus position for CH radicals in the plume of a 25-Torr hydrogen/argon/methane (0.8:1:0.005) dc arcjet during the chemical vapor deposition of diamond film. The laser-induced-fluorescence signal is calibrated with argon Rayleigh scattering, and the resultant concentration of the CH radical in the center of the arcjet plume is found to be (3.5 ± 0.8) × 1012 molecules/cm3. The characterization of the plasma plume shows three different regions in the reacting gas: nozzle, plume, and boundary layer. We observe substantial differences in spatial distribution of gas temperature, collisional quenching, and CH number density among these regions.

© 1997 Optical Society of America

History
Original Manuscript: August 20, 1996
Revised Manuscript: November 21, 1996
Published: May 20, 1997

Citation
J. Luque, W. Juchmann, and J. B. Jeffries, "Absolute concentration measurements of CH radicals in a diamond-depositing dc-arcjet reactor," Appl. Opt. 36, 3261-3270 (1997)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-36-15-3261


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. P. Smith, J. B. Jeffries, “Gas phase chromatography in a diamond depositing dc-arcjet,” in Diamond Material, A. J. Purdes, J. C. Angus, R. F. Davies, B. M. Meyerson, K. E. Spear, M. Yoder, eds. (Electrochemical Society, Pennington, N.J., 1991), pp. 194–201.
  2. D. G. Goodwin, “Simulations of high rate diamond synthesis: methyl as the growth species,” Appl. Phys. Lett. 59, 277–279 (1991). [CrossRef]
  3. M. E. Coltrin, D. S. Dandy, “Analysis of diamond growth in subatmospheric dc plasma-gun reactors,” J. Appl. Phys. 74, 5803–5820 (1993). [CrossRef]
  4. M. Frencklach, H. Wang, “Detailed surface and gas-phase chemical kinetics of diamond deposition,” Phys. Rev. B 43, 1520–1545 (1991). [CrossRef]
  5. F. Hummernbrum, H. Kempkens, A. Ruzicka, H.-D. Sauren, C. Schiffer, J. Uhlenbusch, J. Winter, “Laser-induced fluorescence measurements on the C–X transition of the CH radical produced by a microwave excited process plasma,” Plasma Sources Sci. Technol. 1, 221–231 (1992). [CrossRef]
  6. W. Jacob, M. Engelhard, W. Moller, A. Koch, “Absolute density determination of CH radicals in a methane plasma,” Appl. Phys. Lett. 64, 971–973 (1994). [CrossRef]
  7. M. Engelhard, W. Jacob, W. Möler, A. Koch, “New calibration method for the determination of the absolute density of CH radicals through laser-induced fluorescence,” Appl. Opt. 34, 4542–4551 (1995). [CrossRef] [PubMed]
  8. D. S. Green, T. G. Owano, S. Williams, D. G. Goodwin, R. N. Zare, C. H. Kruger, “Boundary layer profiles in plasma chemical vapor deposition,” Science 259, 1726–1729 (1993). [CrossRef] [PubMed]
  9. C. Kaminski, P. Ewart, “Absolute concentration measurements of C2 in a diamond CVD reactor by laser-induced fluorescence,” Appl. Phys. B 61, 585–592 (1995). [CrossRef]
  10. P. Zalicki, Y. Ma, R. N. Zare, J. R. Dadani, E. H. Wahl, T. G. Owano, C. H. Kruger, “Methyl readical measurement by cavity ring-down spectroscopy,” Chem. Phys. Lett. 234, 269–274 (1995). [CrossRef]
  11. K. L. Menningen, M. A. Childs, H. Toyoda, Y. Ueda, L. W. Anderson, J. E. Lawler, “CH3 and CH densities in a diamond growth dc discharge,” Contrib. Plasma Phys. 35, 359–373 (1995). [CrossRef]
  12. M. A. Childs, K. L. Menningen, H. Toyoda, L. W. Anderson, J. E. Lawler, “Measurements of CH3 and CH densities in a diamond growth dc discharge,” Europhys. Lett. 25, 729–734 (1994). [CrossRef]
  13. J. G. Liebeskind, R. K. Hanson, M. A. Cappelli, “Laser-induced fluorescence diagnostic for temperature and velocity measurements in a hydrogen arcjet plume,” Appl. Opt. 32, 6117–6127 (1993). [CrossRef] [PubMed]
  14. J. A. Pobst, I. J. Wysong, “Laser induced fluorescence of ground state hydrogen atoms at nozzle exit of an arcjet thruster,” in Proceedings of the Twenty-Sixth AIAA Plasmadynaics and Lasers Conference (American Institute of Aeronautics and Astronautics, New York, 1995), AIAA 95-1973, pp. 1–9.
  15. M. Crofton, R. P. Welle, S. W. Janson, R. B. Cohern, “Temperature, velocity and density studies in 1 kW ammonia arcjet plume by LIF,” in Proceedings of the Twenty-Eighth AIAA Joint Propulsion Conference (American Institute of Aeronautics and Astronautics, New York, 1992), AIAA 92-3241.
  16. J. T. Salmon, N. M. Laurendeau, “Calibration of laser-saturated fluorescence measurements using Rayleigh scattering,” Appl. Opt. 24, 65–73 (1985). [CrossRef] [PubMed]
  17. J. Luque, D. R. Crosley, “Absolute CH concentrations in low-pressure flames measured with laser-induced fluorescence,” Appl. Phys. B 63, 91–98 (1996). [CrossRef]
  18. W. P. Partridge, N. M. Laurendeau, “Formulation of a dimensionless overlap fraction to account for spectrally distributed interactions in fluorescence studies,” Appl. Opt. 34, 2645–2647 (1995). [CrossRef] [PubMed]
  19. J. Brzozowski, P. Bunker, N. Elander, P. Erman, “Predissociation effects in the A, B and C states of CH and the interstellar formation rate of CH via inverse predissociation,” Astrophys. J. 207, 414–424 (1976). [CrossRef]
  20. W. Ubachs, G. Meyer, J. J. ter Meulen, A. Dymanus, “Hyperfine structure and lifetime of the C v′ = 0 state of CH,” J. Chem. Phys. 84, 3032–3041 (1986). [CrossRef]
  21. J. Luque, D. R. Crosley, “Electronic transition moment and rotational transition probabilities in CH. I. A–X system,” J. Chem. Phys. 104, 2146–2155 (1996). [CrossRef]
  22. J. Luque, D. R. Crosley, “Electronic transition moment and rotational transition probabilities in CH. II. B–X system,” J. Chem. Phys. 104, 3907–3913 (1996). [CrossRef]
  23. G. A. Raiche, J. B. Jeffries, “Observation and spatial distribution of C3 in a dc-arcjet plama during diamond deposition using laser-induced fluorescence,” Appl. Phys. B (1997), in press.
  24. D. R. Crosley, Molecular Physics Laboratory, SRI International, Menlo Park, Calif. 94025 (personal communication, 1996).
  25. E. A. Brinkman, G. A. Raiche, M. S. Brown, J. B. Jeffries, “Optical diagnostics for temperature measurement in a dc-arcjet reactor used for diamond deposition,” Appl. Phys. B (1997), in press. [CrossRef]
  26. P. H. Paul, “Vibrational energy transfer and quenching of OH A2Σ+ (v′ = 1) measured at high temperatures in a shock tube,” J. Phys. Chem. 99, 8472–8476 (1995). [CrossRef]
  27. N. Garland, D. R. Crosley, “Energy transfer processes in CH A and B in an atmospheric pressure flame,” Appl. Opt. 24, 4229–4237 (1985). [CrossRef]
  28. K. J. Rensberger, M. J. Dyer, R. A. Copeland, “Time resolved CH A and B laser-induced fluorescence in low pressure hydrocarbon flames,” Appl. Opt. 27, 3679–3689 (1988). [CrossRef] [PubMed]
  29. N. L. Garland, D. R. Crosley, “Collisional quenching of CH A, v′ = 0 at 1300 K,” Chem. Phys. Lett. 134, 189–194 (1987). [CrossRef]
  30. P. Heinrich, F. Stuhl, “Temperature dependent quenching of CH A, NH A, NH c, and PH A by H2,” Chem. Phys. 199, 297–304 (1995). [CrossRef]
  31. W. Bauer, B. Engelhardt, P. Wiesen, K. H. Becker, “Lifetime measurements of GeH and CH in the Av′ = 0 state by laser-induced fluorescence,” Chem. Phys. Lett. 158, 321–324 (1989). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited