OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 36, Iss. 15 — May. 20, 1997
  • pp: 3288–3293

Diode laser absorption measurements of CH3Cl and CH4 near 1.65 µm

Shang-I Chou, Douglas S. Baer, and Ronald K. Hanson  »View Author Affiliations

Applied Optics, Vol. 36, Issue 15, pp. 3288-3293 (1997)

View Full Text Article

Acrobat PDF (281 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Two distributed-feedback (InGaAsP) diode lasers were used to record high-resolution absorption spectra of the parallel and the perpendicular components of the 2ν4 band of methyl chloride (CH3Cl) and the 2ν3 band of methane (CH4) near 1.65 μm. The room-temperature absorption measurements, which were conducted in a multipass cell with a variable path length (878–1020 cm), were used to determine the mole fractions of the constituent gases and thus demonstrate species-specific, nonintrusive concentration measurements of species with overlapping spectra.

© 1997 Optical Society of America

Shang-I Chou, Douglas S. Baer, and Ronald K. Hanson, "Diode laser absorption measurements of CH3Cl and CH4 near 1.65 µm," Appl. Opt. 36, 3288-3293 (1997)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. J. E. Lovelock, “Atmospheric halocarbons and stratospheric ozone,” Nature (London) 252, 292–294 (1974).
  2. J. E. Lovelock, “Natural halocarbons in the air and in the sea,” Nature (London) 256, 193–194 (1975).
  3. S. A. Penkett, R. G. Derwent, P. Fabian, R. Borchers, and U. Schmidt, “Methyl chloride in the stratosphere,” Nature (London) 283, 58–60 (1980).
  4. J. H. Park, R. Zander, C. B. Farmer, C. P. Rinsland, J. M. Russell III, R. H. Norton, and O. F. Raper, “Spectroscopic detection of CH3 Cl in the upper troposphere and lower stratosphere,” Geophys. Res. Lett. 13, 765–768 (1986).
  5. R. Zander, C. P. Rinsland, C. B. Farmer, and R. H. Norton, “Infrared spectroscopic measurements of halogenated source gases in the stratosphere with the ATMOS instrument,” J. Geophys. Res. 92, 9836–9850 (1987).
  6. O. F. Raper, C. B. Farmer, R. Zander, and J. H. Park, “Infrared spectroscopic measurements of halogenated sink and reservoir gases in the stratosphere with the ATMOS instrument,” J. Geophys. Res. 92, 9851–9858 (1987).
  7. P. J. Crutzen, L. E. Heidt, J. P. Krasnec, W. H. Pollock, and W. Seiler, “Biomass burning as a source of atmospheric gases CO, H2, N2 O, NO, CH3 Cl and COS,” Nature (London) 282, 253–256 (1979).
  8. M. P. Arroyo, S. Langlois, and R. K. Hanson, “Diode-laser absorption technique for simultaneous measurements of multiple gasdynamic parameters in high-speed flows containing water vapor,” Appl. Opt. 33, 3296–3306 (1994).
  9. M. P. Arroyo, T. P. Birbeck, D. S. Baer, and R. K. Hanson, “Dual diode-laser fiber-optic diagnostic for water-vapor measurements,” Opt. Lett. 19, 1091–1093 (1994).
  10. D. S. Baer, R. K. Hanson, M. E. Newfield, and N. K. L. M. Gopaul, “Multiplexed diode-laser sensor system for simultaneous H2 O, O2, and temperature measurements,” Opt. Lett. 19, 1900–1902 (1994).
  11. D. S. Baer, V. Nagali, E. R. Furlong, R. K. Hanson, and M. E. Newfield, “Scanned-and fixed-wavelength absorption diagnostics for combustion measurements using a multiplexed diode-laser sensor system,” AIAA J. 34, 489–493 (1996).
  12. M. G. Allen, S. J. Davis, W. J. Kessler, D. A. Palombo, and D. M. Sonnenfroh, “Diode laser instrumentation for aeropropulsion applications,” AIAA paper 95–0427 (American Institute of Aeronautics and Astronautics, Washington, D.C., 1995).
  13. M. G. Allen, K. L. Carleton, S. J. Davis, W. J. Kessler, C. E. Otis, D. A. Palombo, and D. M. Sonnenfroh, “Ultrasensitive dual-beam absorption and gain spectroscopy: application for near-infrared and visible diode laser sensors,” Appl. Opt. 34, 3240–3249 (1995).
  14. V. Nagali, S. I. Chou, D. S. Baer, R. K. Hanson, and J. Segall, “Tunable diode-laser absorption measurements of methane at elevated temperatures,” Appl. Opt. 35, 4026–4032 (1996).
  15. A. H. Nielsen and E. F. Barker, “The infrared spectrum of methyl chloride,” Phys. Rev. 46, 970–974 (1934).
  16. T. M. Holladay, “A reinvestigation of the infrared spectrum of methyl chloride,” Ph.D. dissertation (Department of Physics, University of Tennessee, Knoxville, Tennessee, 1962).
  17. T. M. Holladay and A. H. Nielsen, “The infrared spectrum of methyl chloride,” J. Mol. Spectrosc. 14, 371–396 (1964).
  18. E. W. Jones, R. J. L. Popplewell, and H. W. Thompson, “Vibration–rotation bands of methyl chloride,” Spectrochim. Acta 22, 649–680 (1966).
  19. J. S. Margolis, “Absorption strength of the perturbed ν4 band of CH3 Cl,” J. Mol. Spectrosc. 70, 257–262 (1978).
  20. M. Dang-Nhu, M. Morillon-Chapey, G. Graner, and G. Guelachvili, “Intensities of the ν1-bands of12 CH335 Cl and12 CH337 Cl near 3 μm,” J. Quant. Spectrosc. Radiat. Transfer 26, 515–521 (1981).
  21. J. W. Elkins, R. H. Kagann, and R. L. Sams, “Infrared band strengths for methyl chloride in the regions of atmospheric interest,” J. Mol. Spectrosc. 105, 480–490 (1984).
  22. M. Betrencourt, M. Morillon-Chapey, G. Blanquet, and J. Walrand, “Diode laser spectroscopy of methyl chloride near 14 μm toward its detection in the stratosphere,” J. Mol. Spectrosc. 128, 433–443 (1988).
  23. M. Dang-Nhu, G. Blanquet, J. Walrand, and F. Derie, “Spectral intensities in the ν3-band of12 CH335 Cl at 13 μm,” Mol. Phys. 65, 77–83 (1988).
  24. R. G. Brown and T. H. Edwards, “Infrared spectrum of methyl chloride near 6000 cm−1,” J. Chem. Phys. 28, 384–388 (1958).
  25. G. Herzberg, “Infrared and Raman spectra of polyatomic molecules,” in Molecular Spectra and Molecular Structure (Van Nostrand, New York, 1960), Vol. 2, pp. 312–314.
  26. J. S. Margolis, “Measured line positions and strengths of methane between 5500 and 6180 cm−1,” Appl. Opt. 27, 4038–4051 (1988).
  27. L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, and R. A. Toth, “The HITRAN molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
  28. M. R. Gunson, “The atmospheric trace molecule spectroscopy (ATMOS) experiment—the ATLAS-1 mission,” in Optical Methods in Atmospheric Chemistry, U. Platt and H. I. Schiff, eds., Proc. SPIE 1715, 513–521 (1992).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited