OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 36, Iss. 15 — May. 20, 1997
  • pp: 3294–3297

Measurement of nitric oxide with an antimonide diode laser

Daniel B. Oh and Alan C. Stanton  »View Author Affiliations

Applied Optics, Vol. 36, Issue 15, pp. 3294-3297 (1997)

View Full Text Article

Enhanced HTML    Acrobat PDF (184 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An antimonide diode laser operating near 2.65 µm was used to measure absorption lines of NO gas in the first overtone band. A blended line pair of NO that is sufficiently free of interference from H2O to permit the selective detection of NO under reduced pressure conditions was identified. With wavelength-modulation spectroscopy, a rms noise level equivalent to an absorbance of 3.2 × 10-5 was achieved at a measurement integration time (for a single spectral data point) of 0.1 s. The corresponding detection sensitivity (signal-to-noise ratio of 2) for NO in air at reduced pressure was ∼15 ppm m (ppm is parts in 106). Antimonide diode lasers show substantial promise for gas-sensing applications because they can gain access to relatively strong absorption lines of several gases of environmental interest at operating wavelengths at which cryogenic cooling is not required.

© 1997 Optical Society of America

Original Manuscript: October 4, 1996
Revised Manuscript: January 2, 1997
Published: May 20, 1997

Daniel B. Oh and Alan C. Stanton, "Measurement of nitric oxide with an antimonide diode laser," Appl. Opt. 36, 3294-3297 (1997)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. T. Cassidy, J. Reid, “Atmospheric pressure monitoring of trace gases using tunable diode lasers,” Appl. Opt. 21, 1186–1190 (1982).
  2. D. E. Cooper, R. U. Martinelli, “Near-infrared diode lasers monitor molecular species,” Laser Focus World 28 (11) , 133–146 (1992).
  3. D. S. Bomse, “Diode lasers: finding trace gases in the lab and the plant,” Photonics Spectra 29 (6) , 88–94 (1995).
  4. M. Feher, P. A. Martin, “Tunable diode laser monitoring of atmospheric trace gas constituents,” Spectrochim. Acta. Part A 51, 1579–1599 (1995). [CrossRef]
  5. A. Fried, B. Henry, J. Fox, J. R. Drummond, R. Sams, “High precision tunable diode laser absorption spectroscopy: application for measuring long-lived atmospheric gases,” in Monitoring of Gaseous Pollutants by Tunable Diode Lasers, R. Grisar, H. Böttner, M. Tacke, G. Restelli, eds. (Kluwer, Dordrecht, The Netherlands, 1992), pp. 3–12.
  6. J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981). [CrossRef]
  7. J. A. Silver, “Frequency-modulation spectroscopy for trace species detection: theory and comparison among experimental methods,” Appl. Opt. 31, 707–717 (1992). [CrossRef] [PubMed]
  8. D. S. Bomse, J. A. Silver, A. C. Stanton, “Frequency modulation and wavelength modulation spectroscopies: comparison of experimental methods using a lead-salt diode laser,” Appl. Opt. 31, 718–731 (1992). [CrossRef] [PubMed]
  9. P. Werle, F. Slemr, M. Gehrtz, C. Braüchle, “Quantum-limited FM-spectroscopy with a lead-salt diode laser,” Appl. Phys. B 49, 99–108 (1989). [CrossRef]
  10. W. Lenth, “Optical heterodyne spectroscopy with frequency- and amplitude-modulated semiconductor lasers,” Opt. Lett. 11, 575–577 (1983). [CrossRef]
  11. D. E. Cooper, T. F. Gallagher, “Double frequency modulation spectroscopy: high modulation frequency with low-bandwidth detectors,” Appl. Opt. 24, 1327–1334 (1985). [CrossRef] [PubMed]
  12. A. N. Baranov, A. N. Imenkov, M. P. Mikhailova, Yu. P. Yakovlev, “Semiconductor lasers and photodiodes for gas analysis in the spectral range 1.8–2.5 µm,” in Tunable Siode Laser Applications, A. I. Nadezhdinskii, A. M. Prokhorov, eds., Proc. SPIE1724, 78–82 (1992).
  13. S. J. Eglash, H. K. Choi, “InAsSb/AlAsSb double-heterostructure diode lasers emitting at 4 µm,” Appl. Phys. Lett. 64, 833–835 (1994). [CrossRef]
  14. S. R. Kurtz, R. M. Biefeld, L. R. Dawson, K. C. Baucom, A. J. Howard, “Midwave (4 µm) infrared lasers and light-emitting diodes with biaxially compressed InAsSb active regions,” Appl. Phys. Lett. 64, 812–814 (1994). [CrossRef]
  15. H. Lee, P. K. York, R. J. Menna, R. U. Martinelli, D. Z. Garbuzov, S. Y. Narayan, J. C. Connolly, “Room-temperature 2.78 µm AlGaAsSb/InGaAsSb quantum-well lasers,” Appl. Phys. Lett. 66, 1942–1944 (1995). [CrossRef]
  16. H. Chow, R. H. Miles, T. C. Hasenberg, A. R. Kost, Y.-H. Zhang, H. L. Dunlap, L. West, “Mid-wave infrared diode lasers based on GaInSb/InAs and InAs/AlSb superlattices,” Appl. Phys. Lett. 67, 3700–3702 (1995). [CrossRef]
  17. H. K. Choi, G. W. Turner, M. J. Manfra, M. K. Connors, “175 K continuous wave operation of InAsSb/InAlAsSb quantum-well diode lasers emitting at 3.5 µm,” Appl. Phys. Lett. 68, 2936–2938 (1996). [CrossRef]
  18. R. U. Martinelli, “Mid-infrared wavelengths enhance trace-gas sensing,” Laser Focus World 32 (3) , 77–81 (1996).
  19. M. A. H. Smith, C. P. Rinsland, B. Fridovich, K. N. Rao, “Intensities and collision broadening parameters from infrared spectra,” in Molecular Spectroscopy: Modern Research, K. N. Rao, ed. (Academic, New York, 1985), Vol III, pp. 111–248.
  20. L. S. Rothman, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, J.-M. Flaud, A. Perrin, V. Dana, J.-Y. Mandin, A. Goldman, S. Massie, P. Varanasi, K. Yoshino, “The hitran molecular spectroscopic database and HAWKS (hitran atmospheric workstation),” J. Quant. Spectrosc. Radiat. Transfer (1997).
  21. K. L. Haller, P. C. Hobbs, “Doble beam laser absorption spectroscopy: shot-noise limited performance at baseband with a novel electronic noise canceller,” in Optical Methods for Ultrasensitive Analysis: Techniques and Applications, B. L. Fearey, ed., Proc SPIE1435, 298–309 (1991).
  22. D. B. Oh, D. C. Hovde, “Wavelength-modulation detection of acetylene with a near-infrared external-cavity diode laser,” Appl. Opt. 34, 7002–7005 (1995). [CrossRef] [PubMed]
  23. D. M. Sonnenfroh, M. G. Allen, “Ultrasensitive, visible tunable diode laser detection of NO 2,” Appl. Opt. 35, 4053–4058 (1996). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited