OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 36, Iss. 15 — May. 20, 1997
  • pp: 3310–3318

Measurement of particle-size distribution and volume fraction in concentrated suspensions with photon migration techniques

Huabei Jiang, Joseph Pierce, Jeffrey Kao, and Eva Sevick-Muraca  »View Author Affiliations

Applied Optics, Vol. 36, Issue 15, pp. 3310-3318 (1997)

View Full Text Article

Enhanced HTML    Acrobat PDF (321 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The determination of the particle size distribution and the volume fraction in concentrated suspensions from the multiwavelength measurement of isotropic-scattering coefficients by use of frequency-domain photon migration techniques is demonstrated for three different polydisperse polystyrene suspensions. When a Newton-type inverse algorithm is used, the successful recovery of the particle size distribution, in the form of a Weibull function, and the volume fraction of polystyrene suspensions is achieved. Our results are in excellent agreement with dynamic light-scattering size distribution measurements. On consideration of the particle mass conservation as an additional constraint penalty term in the inverse algorithm, it is shown that the quality of the particle size distribution reconstruction can be improved. Because no calibration is needed, photon migration techniques are especially suited for on-line measurement of the particle size distribution and the volume fraction in the chemical- and the pharmaceutical-based industries.

© 1997 Optical Society of America

Original Manuscript: August 20, 1996
Revised Manuscript: December 20, 1996
Published: May 20, 1997

Huabei Jiang, Joseph Pierce, Jeffrey Kao, and Eva Sevick-Muraca, "Measurement of particle-size distribution and volume fraction in concentrated suspensions with photon migration techniques," Appl. Opt. 36, 3310-3318 (1997)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Allen, Particle Size Measurement, 4th ed. (Chapman and Hall, New York, 1990). [CrossRef]
  2. J. Wang, F. R. Hallet, “Spherical particle size determination by analytical inversion of the UV–visible–NIR extinction spectrum,” Appl. Opt. 35, 193–200 (1996). [CrossRef] [PubMed]
  3. P.-H. Wang, G. S. Kent, M. P. McCormick, L. W. Thomason, G. K. Yue, “Retrieval analysis of aerosol-size distribution with simulated extinction measurements at SAGE III wavelengths,” Appl. Opt. 35, 433–440 (1996). [CrossRef] [PubMed]
  4. G. E. Elicabe, L. H. Garcia-Rubio, “Latex particle size distribution from turbidimetric measurements,” in Polymer Characterization, Vol. 227 of ACS Advances in Chemistry Series, C. Carver, T. Provder, eds. (American Chemical Society, Washington, D.C., 1990), pp. 83–104.
  5. J. Vavra, J. Antalik, M. Liska, “Application of regression analysis in spectroturbidity size characterization methods,” Part. Part. Syst. Charact. 12, 38–41 (1995). [CrossRef]
  6. K. S. Shifrin, I. G. Zolotov, “Spectral attenuation and aerosol particle size distribution,” Appl. Opt. 35, 2114–2124 (1996). [CrossRef] [PubMed]
  7. F. Sun, J. W. L. Lewis, “Simplex deconvolutions of particle-size distribution functions from optical measurements,” Appl. Opt. 34, 8437–8445 (1995). [CrossRef] [PubMed]
  8. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1983).
  9. J. D. Klett, “Anomalous diffraction model for inversion of multispectral extinction data including absorption effects,” Appl. Opt. 23, 4499–4508 (1984). [CrossRef] [PubMed]
  10. M. Box, B. McKellar, “Relationship between two analytic inversion formulae for multispectral extinction data,” Appl. Opt. 18, 3599–3601 (1979). [CrossRef] [PubMed]
  11. A. Fymat, C. Smith, “Analytical inversion in remote sensing of particle size distributions. 4: comparison of Fymat and Box–McKellar solutions in the anomalous diffraction approximation,” Appl. Opt. 18, 3595–3598 (1979). [CrossRef] [PubMed]
  12. J. Heintzenberg, H. Muller, H. Quenzel, E. Thomalla, “Information content of optical data with respect to aerosol properties: numerical studies with a randomized minimization-search-technique inversion algorithm,” Appl. Opt. 20, 1308–1315 (1981). [CrossRef] [PubMed]
  13. O. V. Dubovik, T. V. Lapyonok, S. L. Oshchepkov, “Improved technique for data inversion: optical sizing of multicomponent aerosols,” Appl. Opt. 34, 8422–8436 (1995). [CrossRef] [PubMed]
  14. E. M. Sevick, B. Chance, J. Leigh, S. Nioka, M. Maris, “Quantitation of time- and frequency-resolved optical spectra for the determination of tissue oxygenation,” Anal. Biochem. 195, 330–351 (1991). [CrossRef] [PubMed]
  15. B. C. Wilson, E. M. Sevick, M. S. Patterson, B. Chance, “Time-dependent optical spectroscopy and imaging for biomedical applications,” Proc. IEEE 80, 918–930 (1992). [CrossRef]
  16. J. J. Duderstadt, L. J. Hamilton, Nuclear Reactor Analysis (Wiley, New York, 1976).
  17. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1976), pp. 103–232.
  18. S. Chandrasekhar, Radiative Transfer (Oxford U. Press, New York, 1960).
  19. R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, M. S. McAdams, B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2741 (1994). [CrossRef]
  20. G. F. Bohren, D. R. Hoffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  21. M. S. Patterson, J. D. Moulton, B. C. Wilson, B. Chance, “Applications of time-resolved light scattering measurements using phase modulation spectroscopy,” in Photodynamic Therapy: Mechanisms II, J. Dougherty, ed., Proc. SPIE1203, 62–75 (1991).
  22. J. B. Fishkin, P. T. C. So, A. E. Cerussi, S. Fantini, M. A. Franceschini, E. Gratton, “Frequency-domain method for measuring spectral properties in multiple scattering media: methemoglobin absorption spectrum in a tissuelike phantom,” Appl. Opt. 34, 1143–1155 (1995). [CrossRef] [PubMed]
  23. A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, B. C. Wilson, “Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue,” Appl. Opt. 35, 2304–2314 (1996). [CrossRef] [PubMed]
  24. C. Derman, L. J. Gleser, I. Olkin, A Guide to Probability Theory and Application (Holt, Rinehart & Winston, New York, 1973), Chap. 8, p. 378.
  25. D. W. Marquardt, “An algorithm for least squares estimation of nonlinear parameters,” SIAM (Soc. Ind. Appl. Math.) J. Appl. Math. 11, 431–441 (1963). [CrossRef]
  26. J. R. Alcala, E. Gratton, D. M. Jameson, “A multifrequency phase fluorimeter using the harmonic content of a mode-locked laser,” Anal. Instrum. 14, 225–250 (1985). [CrossRef]
  27. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Plenum, Press, New York, 1983), pp. 51–108. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited