OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 36, Iss. 15 — May. 20, 1997
  • pp: 3363–3374

Flash-lamp-pumped Ho:Tm:Cr:YAG and Ho:Tm:Er:YLF lasers: modeling of a single, long pulse length comparison

Norman P. Barnes, Keith E. Murray, and Mahendra G. Jani  »View Author Affiliations

Applied Optics, Vol. 36, Issue 15, pp. 3363-3374 (1997)

View Full Text Article

Acrobat PDF (313 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Two methods of producing the long pulse lengths that promote efficient extraction of energy from low-gain, quasi-four-level lasers are analyzed. A long pulse length output can mitigate laser-induced damage effects and can be generated in quasi-four-level lasers by two disparate methods. One method utilizes Q-switching techniques in resonators designed to extend the pulse length and another utilizes the first pulse in a relaxation oscillation pulse train. Models for quasi-four-level lasers are derived here taking into account the nonnegligible thermal population of the lower laser level. Closed-form expressions are derived for both modes of operation of quasi-four-level laser systems so the parametric dependencies of both forms of operation become obvious, allowing facile comparison. In addition, a combined absorption and quantum efficiency, germane for flash-lamp pumping, is calculated for both Cr and Er sensitizers. Although the former has the advantage of broad absorption bands, the latter has the advantage of a quantum efficiency approaching 3.

© 1997 Optical Society of America

Norman P. Barnes, Keith E. Murray, and Mahendra G. Jani, "Flash-lamp-pumped Ho:Tm:Cr:YAG and Ho:Tm:Er:YLF lasers: modeling of a single, long pulse length comparison," Appl. Opt. 36, 3363-3374 (1997)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. R. Dunsmuir, “Theory of relaxation oscillations in optical masers,” J. Electron. Control 10, 453–458 (1963).
  2. R. B. Chesler, M. A. Karr, and J. E. Geusic, “An experimental and theoretical study of high repetition rate Q-switched Nd:YAG lasers,” Proc. IEEE 58, 1899–1914 (1970).
  3. W. Koechener, Solid State Laser Engineering (Springer-Verlag, New York, 1976), 245–281.
  4. P. L. Cross, N. P. Barnes, M. W. Skolaut, Jr., and M. E. Storm, “Blackbody absorption efficiencies for six lamp pumped Nd laser materials,” Appl. Opt. 29, 791–797 (1990).
  5. W. G. Wagner and B. A. Lengyel, “Evolution of the giant pulse in a laser,” J. Appl. Phys. 34, 2040–2046 (1963).
  6. A. C. Selden, “Theoretical assessment of a high power continuous wave 4-level solid laser,” Br. J. Appl. Phys. 17, 729–736 (1966).
  7. N. G. Badov, N. N. Morosov, and V. N. Oralvsky, “Theory of pulsating condition for lasers,” IEEE J. Quantum Electron. QE-2, 542–548 (1966).
  8. D. G. Carlson, “Dynamics of a repetitively pulse pumped Nd:YAG laser,” J. Appl. Phys. 39, 4369–4374 (1968).
  9. H. Statz and G. de Mars, “Transients and oscillation pulses in Masers,” in Quantum Electronics, C. H. Townes, (Columbia U. Press, New York, 1960), pp. 530–537.
  10. C. L. Tang, H. Statz, and G. de Mars, “Spectral output and spiking behavior of solid state lasers,” J. Appl. Phys. 34, 2289–2295 (1963).
  11. T. Y. Fan, E. Huber, R. L. Byer, and P. Mitzschertich, “Spectroscopy and diode laser pumped operation of Tm, Ho:YAG,” IEEE J. Quantum Electron. QE-24, 924–933 (1988).
  12. A. E. Seigman, Lasers (University Science, Mill Valley, Calif., 1986), 954–1021.
  13. M. G. Jani, N. P. Barnes, and K. E. Murray, “Flash-lamp-pumped Ho:Tm:Cr:YAG and Ho:Tm:Er:YLF lasers: experimental results of a single, long pulse length comparison,” Appl. Opt. 36, 3357–3362 (1997).
  14. N. P. Barnes, M. E. Storm, P. L. Cross, and M. W. Skolaut, Jr., “Efficiency of Nd laser materials with laser diode pumping,” IEEE J. Quantum Electron. 26, 558–569 (1990).
  15. V. N. Budnik, A. D. Gondra, V. I. Zhekov, V. A. Lobackev, T. M. Murina, Yu. I. Terent’ev, and A. A. Scherbakoo, “Mathematical modeling of energy processes in YAG:Er3+ lasers,” Sov. J. Quantum Electron. 19, 1076–1083 (1989).
  16. N. P. Barnes, E. D. Filer, C. A. Morrison, and C. J. Lee, “Ho:Tm laser I: modeling,” IEEE J. Quantum Electron. 32, 92–104 (1996).
  17. G. J. Kintz, R. Allen, and L. Esterowitz, “Two for one photon conversion observed in alexandrite pumped Tm3+, Ho3+), YAG at room temperature,” in Conference on Lasers and Electro-Optics, Vol. 14 of OSA 1987 Technical Digest Series (Optical Society of America, Washington, D.C., 1987).
  18. A. Brenier, R. Moncorge, and C. Pedrini, “Er3+ → Tm3+ energy transfer in YLiF4 (YLF),” IEEE J. Quantum Electron. 26, 967–971 (1990).
  19. G. Armagan, A. M. Buoncristiani, A. T. Inge, and B. DiBartolo, “Comparison of spectroscopic properties of Tm and Ho in YAG crystals,” in Advanced Solid State Lasers, Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991).
  20. T. T. Basiev, S. Georgescu, V. I. Zhekov, V. Lupei, T. M. Murina, A. M. Prokhorov, and M. I. Sludenikin, “Characteristics of concentration quenching of luminescence from the4 S3/2 level of the Er3+ ion in a (Y1− x Erx)3 Al2 O5 crystal,” Sov. J. Quantum Electron. 18, 1123–1125 (1988).
  21. I. Ursu, A. Lupei, S. Georgescu, V. Lupei, A. M. Prokhorov, V. I. Zhekov, T. M. Murina, and M. I. Studenkin, “Energy transfer characteristics of the4 S3/2 level of Er3+ in YAG,” Opt. Commun. 72, 209–211 (1989).
  22. E. P. Chicklis, R. C. Folweiler, C. S. Naiman, D. R. Gabbe, A. Linz, and H. P. Jenssen, “Development of multiple sensitized Ho:YLF as a laser material,” Research and Development Technical Report ECOM-73–0066-F (U.S. Army Electronics Command, Fort Monmouth, N.J. 07703, 1974).
  23. N. P. Barnes, R. E. Allen, L. Esterowitz, and M. G. Knights, “Performance of Er:YLF at 1.73 μm,” IEEE J. Quantum Electron. QE-22, 337–343 (1986).
  24. M. A. Rogenov, V. A. Smirnov, and I. A. Scherbakov, “Nonlinear population processes of Er3+ laser levels in chromium-doped garnet crystals,” Opt. Quantum Electron. 22, 561–574 (1990).
  25. W. Q. Shi, M. Bass, and M. Birnbaum, “Effects of energy transfer among Er3+ ions on the fluorescence decay and lasing properties of heavily doped Er:Y3 Al5 O12,” J. Opt. Soc. Am. B 7, 1456–1462 (1990).
  26. D. C. Cronemeyer, “Optical absorption characteristics of ruby,” J. Opt. Soc. Am. 56, 1703–1706 (1966).
  27. G. Bruno and M. I. Nathan, “Quantum efficiency of ruby,” J. Appl. Phys. 34, 703–705 (1963).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited