OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 36, Iss. 15 — May. 20, 1997
  • pp: 3458–3468

Lidar effective multiple-scattering coefficients in cirrus clouds

François Nicolas, Luc R. Bissonnette, and Pierre H. Flamant  »View Author Affiliations

Applied Optics, Vol. 36, Issue 15, pp. 3458-3468 (1997)

View Full Text Article

Enhanced HTML    Acrobat PDF (316 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We delimit a regime, valid for most ground-based lidar probings of cirrus clouds, in which the field-of-view dependence of multiple scattering reaches a plateau. In this regime and assuming the phase function to be constant around π, we formally demonstrate Platt’s modification of the single-scattering lidar equation, with a parameter η P accounting for the reduction of the effective scattering coefficient defined so that (1 - η P) is the amount of energy scattered in the forward peak. Then, to cope with nonconstant backscattering functions, we discuss the introduction of an effective backscattering coefficient that is an average of the scattering probabilities around π.

© 1997 Optical Society of America

Original Manuscript: October 19, 1995
Revised Manuscript: December 23, 1996
Published: May 20, 1997

François Nicolas, Luc R. Bissonnette, and Pierre H. Flamant, "Lidar effective multiple-scattering coefficients in cirrus clouds," Appl. Opt. 36, 3458-3468 (1997)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. N. Liou, “Review: influence of cirrus clouds on weather and climate processes: a global perspective,” Mon. Weather Rev. 114, 1167–1199 (1986). [CrossRef]
  2. S. K. Cox, “Cirrus clouds and the climate,” J. Atmos. Sci. 28, 1513–1515 (1971). [CrossRef]
  3. S. R. Pal, A. I. Carswell, “Polarization properties of lidar backscattering from clouds,” Appl. Opt. 12, 1530–1535 (1973). [CrossRef] [PubMed]
  4. C. M. R. Platt, “Lidar and radiometric observations of cirrus clouds,” J. Atmos. Sci. 30, 1191–1204 (1973). [CrossRef]
  5. C. M. R. Platt, “Remote sounding of high clouds. III: Monte Carlo calculations of multiple-scattered lidar returns,” J. Atmos. Sci. 38, 156–167 (1980). [CrossRef]
  6. E. W. Eloranta, “Calculation of doubly scattered lidar returns,” Ph.D. dissertation (University of Wisconsin, Madison, Wisconsin, 1972).
  7. E. W. Eloranta, S. T. Shipley, “A solution for multiple scattering,” in Atmospheric Aerosols: Their Formation, Optical Properties and Effects, A. Deepak, ed. (Spectrum, Hampton, Va., 1982).
  8. L. R. Bissonnette, P. Bruscaglioni, A. Ismaelli, G. Zaccanti, A. Cohen, Y. Benayahu, R. D. Harack, L. D. Cohen, C. Flesia, P. Schwendimann, M. Oppel, D. M. Winkel, E. P. Zege, I. L. Katsev, I. N. Polonsky, “Lidar multiple scattering from clouds,” Appl. Phys. B 60, 355–362 (1995). [CrossRef]
  9. E. P. Zege, I. L. Katsev, I. N. Polonsky, “Analytical solution to lidar return signals from clouds with regard to multiple scattering,” Appl. Phys. B 60, 345–353 (1995). [CrossRef]
  10. L. R. Bissonnette, “Multiscattered model for propagation of narrow light beams in aerosol media,” Appl. Opt. 27, 2748–2484 (1988). [CrossRef]
  11. L. R. Bissonnette, “Multiple-scattering lidar equation,” Appl. Opt. 35, 6449–6465 (1996). [CrossRef] [PubMed]
  12. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, London, 1978).
  13. H. C. van de Hulst, Multiple Light Scattering (Academic, New York, 1980).
  14. A. Davis, A. Marshak, R. Cahalan, W. Wiscombe, “The LANDSAT scale-break in stratocumulus as a three-dimensional radiative transfer effect, implication for cloud remote sensing,” J. Atmos. Sci. (1997), in press. [CrossRef]
  15. D. M. Winker, R. H. Couch, M. P. McCormick, “An overview of LITE: NASA’s Lidar In-Space Technology Experiment,” Proc. IEEE 84, 164–180 (1996). [CrossRef]
  16. D. M. Winker, “Multiple scattering effects observed in LITE data: the good, the bad, and the ugly,” in Proceedings of the Eighth MUSCLE Workshop, Québec (1996).
  17. D. Deirmendjian, Electromagnetic Scattering on Spherical Polydispersions (Elsevier, New York, 1969), pp. 68–71 and 104–106.
  18. M. Hess, M. Wiegner, “COP: a data library of optical properties of hexagonal ice crystals,” Appl. Opt. 33, 7740–7746 (1994). [CrossRef] [PubMed]
  19. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).
  20. M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1980).
  21. E. P. Zege, I. L. Katsev, A. P. Ivanov, Image Transfer through a Scattering Medium (Springer-Verlag, New York, 1991). [CrossRef]
  22. M. Wiegner, G. Echle, “Lidar multiple scattering: improvement of Bissonnette’s paraxial approximation,” Appl. Opt. 32, 6789–6803 (1993). [CrossRef] [PubMed]
  23. G. Zaccanti, P. Bruscaglioni, M. Dami, “Simple inexpensive method of measuring the temporal spreading of a light pulse propagating in a turbid medium,” Appl. Opt. 29, 3938–3944 (1990). [CrossRef] [PubMed]
  24. G. C. Mooradian, M. Geller, L. B. Stotts, D. H. Stephens, R. A. Krautwald, “Blue-green pulsed propagation through fog,” Appl. Opt. 18, 429–441 (1979). [CrossRef] [PubMed]
  25. J. S. Ryan, A. I. Carswell, “Laser beam broadening and depolarization in dense fogs,” J. Opt. Soc. Am. 68, 900–908 (1978). [CrossRef]
  26. I. L. Katsev, E. P. Zege, A. S. Prikhach, I. N. Polonsky, “Efficient technique to determine backscattered light power for various atmospheric and oceanic sounding imaging systems,” J. Opt. Soc. Am. A 14, 1338–1346 (1997). [CrossRef]
  27. H. Jacobowitz, “A method for computing the transfer of solar radiation through clouds of hexagonal ice crystals,” J. Quant. Spectrosc. Radiat. Transfer 11, 691–695 (1971). [CrossRef]
  28. A. Macke, “Scattering of light by polyhedral ice crystals,” Appl. Opt. 32, 2780–2788 (1993). [CrossRef] [PubMed]
  29. S. A. Young, “Analysis of lidar profiles in optically thin clouds,” Appl. Opt. 34, 7019–7031 (1995). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited