OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 36, Iss. 15 — May. 20, 1997
  • pp: 3475–3490

Aerosol and cloud backscatter at 1.06, 1.54, and 0.53 µm by airborne hard-target-calibrated Nd:YAG/methane Raman lidar

James D. Spinhirne, S. Chudamani, John F. Cavanaugh, and Jack L. Bufton  »View Author Affiliations


Applied Optics, Vol. 36, Issue 15, pp. 3475-3490 (1997)
http://dx.doi.org/10.1364/AO.36.003475


View Full Text Article

Enhanced HTML    Acrobat PDF (10032 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A lidar instrument was developed to make simultaneous measurements at three distinct wavelengths in the visible and near infrared at 0.532, 1.064, and 1.54 µm with high cross-sectional calibration accuracy. Aerosol and cloud backscatter cross sections were acquired during November and December 1989 and May and June 1990 by the NASA DC-8 aircraft as part of the Global Backscatter Experiment. The instrument, methodology, and measurement results are described. A Nd:YAG laser produced 1.064- and 0.532-µm energy. The 1.54-µm transmitted pulse was generated by Raman-shifted downconversion of the 1.064-µm pulse through a Raman cell pressured with methane gas. The lidar could be pointed in the nadir or zenith direction from the aircraft. A hard-target-based calibration procedure was used to obtain the ratio of the system calibration between the three wavelengths, and the absolute calibration was referenced to the 0.532-µm lidar molecular backscatter cross section for the clearest scattering regions. From the relative wavelength calibration, the aerosol backscatter cross sections at the longer wavelengths are resolved for values as small as 1% of the molecular cross section. Backscatter measurement accuracies are better than 10-9 (m sr)-1 at 1.064 and 1.54 µm. Results from the Pacific Ocean region of the multiwavelength backscatter dependence are presented. Results show extensive structure and variation for the aerosol cross sections. The range of observed aerosol cross section is over 4 orders of magnitude, from less than 10-9 (m sr)-1 to greater than 10-5 (m sr)-1.

© 1997 Optical Society of America

History
Original Manuscript: January 23, 1996
Revised Manuscript: November 5, 1996
Published: May 20, 1997

Citation
James D. Spinhirne, S. Chudamani, John F. Cavanaugh, and Jack L. Bufton, "Aerosol and cloud backscatter at 1.06, 1.54, and 0.53 µm by airborne hard-target-calibrated Nd:YAG/methane Raman lidar," Appl. Opt. 36, 3475-3490 (1997)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-36-15-3475

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited