OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 36, Iss. 15 — May. 20, 1997
  • pp: 3491–3499

Coherent Doppler lidar measurements of winds in the weak signal regime

Rod Frehlich, Stephen M. Hannon, and Sammy W. Henderson  »View Author Affiliations


Applied Optics, Vol. 36, Issue 15, pp. 3491-3499 (1997)
http://dx.doi.org/10.1364/AO.36.003491


View Full Text Article

Enhanced HTML    Acrobat PDF (366 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In the weak signal regime coherent Doppler lidar velocity estimates are characterized by a localized distribution around the true mean velocity and a uniform distribution of random outliers over the velocity search space. The performance of velocity estimators is defined by the standard deviation of the good estimates around the true mean velocity and the fraction of random outliers. The quality of velocity estimates is improved with pulse accumulation. The performance of velocity estimates from two different coherent Doppler lidars in the weak signal regime is compared with the predictions of computer simulations for pulse accumulation from 1 to 100 pulses.

© 1997 Optical Society of America

History
Original Manuscript: June 20, 1996
Revised Manuscript: October 16, 1996
Published: May 20, 1997

Citation
Rod Frehlich, Stephen M. Hannon, and Sammy W. Henderson, "Coherent Doppler lidar measurements of winds in the weak signal regime," Appl. Opt. 36, 3491-3499 (1997)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-36-15-3491


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. J. Kavaya, S. W. Henderson, J. R. Magee, C. P. Hale, R. M. Huffaker, “Remote wind profiling with a solid-state Nd:YAG coherent lidar system,” Opt. Lett. 14, 776–778 (1989). [CrossRef] [PubMed]
  2. S. W. Henderson, C. P. Hale, J. R. Magee, M. J. Kavaya, A. V. Huffaker, “Eye-safe coherent laser radar system at 2.1 µm using Tm,Ho:YAG lasers,” Opt. Lett. 16, 773–775 (1991). [CrossRef] [PubMed]
  3. S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2-µm using solid-state lasers,” IEEE Trans. Geosci. Remote Sensing 31, 4–15 (1993). [CrossRef]
  4. R. G. Frehlich, S. Hannon, S. Henderson, “Performance of a 2-µm coherent Doppler lidar for wind measurements,” J. Atmos. Ocean. Technol. 11, 1517–1528 (1994). [CrossRef]
  5. B. J. Rye, R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. I. Spectral accumulation and the Cramer-Rao lower bound,” IEEE Trans. Geosci. Remote Sensing 31, 16–27 (1993). [CrossRef]
  6. B. J. Rye, R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. II. Correlogram accumulation,” IEEE Trans. Geosci. Remote Sensing 31, 28–35 (1993). [CrossRef]
  7. R. G. Frehlich, M. J. Yadlowsky, “Performance of mean frequency estimators for Doppler radar and lidar,” J. Atmos. Ocean. Technol. 11, 1217–1230 (1994). [CrossRef]
  8. R. G. Frehlich, “Simulation of coherent Doppler lidar performance in the weak signal regime,” J. Atmos. Ocean. Technol. 13, 646–658 (1996). [CrossRef]
  9. R. G. Frehlich, “Effects of wind turbulence on coherent Doppler lidar performance,” J. Atmos. Ocean. Technol. 14, 54–75 (1997). [CrossRef]
  10. B. J. Rye, R. M. Hardesty, “Detection techniques for validating Doppler estimates in heterodyne lidar,” Appl. Opt. 36, 1940–1951 (1997). [CrossRef] [PubMed]
  11. B. J. Rye, “Spectral correlation of atmospheric lidar returns with range-dependent backscatter,” J. Opt. Soc. Am. A 7, 2199–2207 (1990). [CrossRef]
  12. R. Targ, B. C. Steakley, J. G. Hawley, L. L. Ames, D. Swanson, R. Stone, R. G. Otto, V. Zarifis, P. Brockman, R. S. Calloway, P. A. Robinson, S. R. Harrell, “Coherent lidar airborne wind sensor II: flight-test results at 2 µm and 10 µm,” Appl. Opt. 35, 7117–7127 (1996). [CrossRef] [PubMed]
  13. H. L. Van Trees, Detection, Estimation, and Modulation Theory, Part I (Wiley, New York, 1968).
  14. C. W. Helstrom, Statistical Theory of Signal Detection (Pergamon, Oxford, England, 1968).
  15. R. G. Frehlich, “Cramer-Rao bound for Gaussian random processes and applications to radar processing of atmospheric signals,” IEEE Trans. Geosci. Remote Sensing 31, 1123–1131 (1993). [CrossRef]
  16. B. Gold, A. V. Oppenheim, C. M. Rader, “Theory and implementation of the discrete Hilbert transformation,” in Symposium on Computer Processing in Communications (Polytechnic Press, Brooklyn, N.Y., 1970), Vol. 19, pp. 235–250.
  17. V. Cizek, “Discrete Hilbert transform,” IEEE Trans. Audio Electroacoust. AU-18, 340–343 (1970). [CrossRef]
  18. P. H. Hilderbrand, R. S. Sekhon, “Objective determination of the noise level in Doppler spectra,” J. Appl. Meteorl. 13, 808–811 (1974). [CrossRef]
  19. J. H. Churnside, H. T. Yura, “Speckle statistics of atmospherically backscattered laser light,” Appl. Opt. 22, 2559–2565 (1983). [CrossRef] [PubMed]
  20. R. G. Frehlich, “Coherent Doppler lidar signal covariance including wind shear and wind turbulence,” Appl. Opt. 33, 6472–6481 (1994). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited