OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 36, Iss. 15 — May. 20, 1997
  • pp: 3500–3505

Simultaneous temperature and relative nitrogen–oxygen concentration measurements in air with pure rotational coherent anti-Stokes Raman scattering for temperatures to as high as 2050 K

Albert Thumann, Martin Schenk, Joachim Jonuscheit, Thomas Seeger, and Alfred Leipertz  »View Author Affiliations

Applied Optics, Vol. 36, Issue 15, pp. 3500-3505 (1997)

View Full Text Article

Enhanced HTML    Acrobat PDF (270 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The accuracy of temperature and simultaneous relative N2–O2 concentration measurements of accumulated as well as of single-pulse rotational coherent anti-Stokes Raman spectra has been investigated in air in the temperature range from 300 to 2050 K. The experimental spectra were taken in a high-temperature oven at atmospheric pressure for a constant oxygen concentration of 20.9% (air). The evaluation procedure is based on the energy-corrected sudden-power scaling law. The agreement of the thermocouple readings with the mean values of the evaluated coherent anti-Stokes Raman spectroscopy temperatures is higher than 50 K and independent of the temperature. The evaluated oxygen concentration is found to be in the range from 20.0 to 21.7% and is also independent of the temperature.

© 1997 Optical Society of America

Original Manuscript: April 8, 1996
Revised Manuscript: November 1, 1996
Published: May 20, 1997

Albert Thumann, Martin Schenk, Joachim Jonuscheit, Thomas Seeger, and Alfred Leipertz, "Simultaneous temperature and relative nitrogen–oxygen concentration measurements in air with pure rotational coherent anti-Stokes Raman scattering for temperatures to as high as 2050 K," Appl. Opt. 36, 3500-3505 (1997)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. A. Rahn, S. C. Johnston, R. L. Farrow, P. L. Mattern, “CARS thermometry in an internal combustion engine,” in Temperature: Its Measurement and Control in Science and Industry, J. F. Schooley, ed. (American Institute of Physics, New York, 1982), Vol. 5, pp. 609–613.
  2. R. P. Lucht, R. E. Teets, R. M. Green, R. E. Palmer, C. R. Ferguson, “Unburned gas temperatures in an internal combustion engine. I. CARS temperature measurements,” Combust. Sci. Technol. 55, 41–61 (1987). [CrossRef]
  3. M. J. Cottereau, F. Grisch, J. J. Marie, “CARS measurements of temperature and species concentrations in an IC engine,” Appl. Phys. B 51, 63–66 (1990). [CrossRef]
  4. T. Nakada, T. Itoh, Y. Takagi, “Application of CARS to Development of High Compression Ratio Spark Ignition Engine,” SAE Paper 932644 (Society of Automotive Engineers, Warrendale, Pa., 1993).
  5. K. Kajiyama, K. Sajiki, H. Katakoka, S. Maeda, C. Hirose, “N2 CARS Thermometry in Diesel Engine,” SAE Paper 821036 (Society of Automotive Engineers, Warrendale, Pa., 1982).
  6. R. Bombach, B. Hemmerlein, W. Kreutner, “CARS temperature measurements in a lean, turbulent, 120KW natural gas flame,” in Non-Instrusive Combustion Diagnostics, K. K. Kuo, T. P. Parr, eds. (Begell House, New York, 1994), pp. 145–151.
  7. R. Lückenrath, M. Woyde, W. Meier, W. Stricker, U. Schnell, H.-J. Magel, J. Görres, H. Spliethoff, H. Maier, “Comparison of coherent anti-Stokes Raman-scattering thermometry with thermocouple measurements and model predictions in both natural-gas and coal-dust flames,” Appl. Opt. 34, 3303–3312 (1995). [CrossRef]
  8. S. Kampmann, T. Seeger, A. Leipertz, “Simultaneous coherent anti-Stokes Raman scattering and two-dimensional laser Rayleigh thermometry in a contained technical swirl combustor,” Appl. Opt. 34, 2780–2786 (1995). [CrossRef] [PubMed]
  9. A. C. Eckbreth, T. J. Anderson, J. A. Shirley, “Laser Raman diagnostics for propulsion systems development,” Ber. Bunsenges. Phys. Chem. 97, 1597–1608 (1993). [CrossRef]
  10. J. Zheng, J. B. Snow, D. V. Murphy, A. Leipertz, R. K. Chang, R. L. Farrow, “Experimental comparison of broadband rotational coherent anti-Stokes Raman scattering (CARS) and broadband vibrational CARS in a flame,” Opt. Lett. 9, 341–343 (1984). [CrossRef] [PubMed]
  11. A. C. Eckbreth, T. J. Anderson, “Simultaneous rotational coherent anti-Stokes Raman spectroscopy and coherent Stokes Raman spectroscopy with arbitrary pump-Stokes spectral separation,” Opt. Lett. 11, 496–498 (1986). [CrossRef] [PubMed]
  12. M. Alden, P.-E. Bengtsson, H. Edner, “Rotational CARS generation through a multiple four-color interaction,” Appl. Opt. 25, 4493–4500 (1986). [CrossRef] [PubMed]
  13. T. Seeger, “Anwendungsvergleich von Vibrations- und Rotations-CARS in der technischen Verbrennung,” Ph.D. dissertation (Universität Erlangen-Nürnberg, 1994).
  14. L. Martinsson, P.-E. Bengtsson, M. Alden, “Oxygen concentration and temperature measurements in N2-O2 mixtures using rotational coherent anti-Stokes Raman spectroscopy,” Appl. Phys. B 62, 29–37 (1996). [CrossRef]
  15. T. Seeger, A. Leipertz, “Experimental comparison of single-shot broadband vibrational and dual broadband pure rotational coherent anti-Stokes Raman scattering in hot air,” Appl. Opt. 35, 2665–2671 (1996). [CrossRef] [PubMed]
  16. P.-E. Bengtsson, L. Martinsson, M. Alden, S. Kröll, “Rotational CARS thermometry in sooting flames,” Combust. Sci. Technol. 81, 129–140 (1992). [CrossRef]
  17. P.-E. Bengtsson, L. Martinsson, M. Alden, B. Johansson, B. Lassesson, K. Marfori, G. Lundholm, “Dual broadband rotational CARS measurements in an IC engine,” in Proceedings of the Twenty-Fifth International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1992), pp. 1735–1742.
  18. L. Martinsson, P.-E. Bengtsson, M. Alden, S. Kröll, J. Bonamy, “A test of different rotational Raman linewidth models: accuracy of rotational coherent anti-Stokes Raman scattering thermometry in nitrogen from 295 to 1850 K,” J. Chem. Phys. 99, 2466–2477 (1993). [CrossRef]
  19. A. C. Eckbreth, Laser Diagnostic for Combustion Temperature and Species (Abacus, Cambridge, Mass., 1988).
  20. D. A. Greenhalgh, “Quantitative CARS spectroscopy,” in Advances in Non-Linear Spectroscopy, R. J. H. Clark, R. E. Hester, eds. (Wiley, New York, 1988), Vol. 15, pp. 193–251.
  21. M. A. Yuratich, “Effects of laser linewidth on coherent anti-Stokes Raman spectroscopy,” Mol. Phys. 38, 625–655 (1979). [CrossRef]
  22. D. V. Murphy, “Broad-band rotational CARS thermometry in nitrogen gas,” Ph.D. dissertation (Yale University, New Haven, Conn., 1981).
  23. A. Leipertz, “Temperaturbestimmung in Gasen mittels linearer und nichtlinearer Raman-Prozesse,” Habilitation thesis (Ruhr-Universität, Bochum, Germany, 1984).
  24. J. D. Drake, “Rotational Raman intensity-correction factors due to vibrational anharmonicity: their effect on temperature measurements,” Opt. Lett. 7, 440–441 (1982). [CrossRef] [PubMed]
  25. E. Magens, “Nutzung von Rotations-CARS zur Temperaturund Konzentrationsmessung in Flammen,” Ph.D. dissertation (Universität Erlangen-Nürnberg, Erlangen, 1992).
  26. A. E. DePristo, S. D. Augustin, R. Ramaswany, H. Rabitz, “Quantum number and energy scaling for nonreactive collisions,” J. Chem. Phys. 71, 850–865 (1979). [CrossRef]
  27. L. Bonamy, J. Bonamy, D. Robert, B. Lavorel, R. Saint-Loup, R. Chaux, J. Santos, H. Berger, “Rotational inelastic rates for N2-N2 systems from a scaling theoretical analysis of stimulated Raman Q branch,” J. Chem. Phys. 89, 5568–5577 (1988). [CrossRef]
  28. G. Millot, R. Saint-Loup, J. Santos, R. Chaux, H. Berger, J. Bonamy, “Collisional effects in stimulated Raman Q branch of O2 and O2-N2,” J. Chem. Phys. 96, 961–971 (1992). [CrossRef]
  29. M. Berard, P. Lallemand, J. P. Cebe, M. Giraud, “Experimental and theoretical analysis of the temperature dependence of rotational Raman linewidths of oxygen,” J. Chem. Phys. 78, 672–687 (1983). [CrossRef]
  30. D. R. Snelling, G. J. Smallwood, R. A. Sawchuk, “Nonlinearity and image persistence of P-20 phosphor-based intensified photodiode array detectors used in CARS spectroscopy,” Appl. Opt. 28, 3226–3232 (1989). [CrossRef] [PubMed]
  31. D. R. Snelling, G. J. Smallwood, T. Parameswaran, “Effect of detector nonlinearity and image persistence on CARS derived temperatures,” Appl. Opt. 28, 3233–3241 (1989). [CrossRef] [PubMed]
  32. minpack (Argonne National Laboratory, Argonne, Ill., March1980 Version).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited