OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 36, Iss. 15 — May. 20, 1997
  • pp: 3521–3531

Light scattering by a reentrant fractal surface

Alberto Mendoza-Suárez and Eugenio R. Méndez  »View Author Affiliations


Applied Optics, Vol. 36, Issue 15, pp. 3521-3531 (1997)
http://dx.doi.org/10.1364/AO.36.003521


View Full Text Article

Enhanced HTML    Acrobat PDF (389 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Recently, rigorous numerical techniques for treating light scattering problems with one-dimensional rough surfaces have been developed. In their usual formulation, these techniques are based on the solution of two coupled integral equations and are applicable only to surfaces whose profiles can be described by single-valued functions of a coordinate in the mean plane of the surface. In this paper we extend the applicability of the integral equation method to surfaces with multivalued profiles. A procedure for finding a parametric description of a given profile is described, and the scattering equations are established within the framework of this formalism. We then present some results of light scattering from a sequence of one-dimensional flat surfaces with defects in the form of triadic Koch curves. Beyond a certain order of the prefractal, the scattering patterns become stationary (within the numerical accuracy of the method). It can then be argued that the results obtained correspond to a surface with a fractal structure. These constitute, to our knowledge, the first rigorous calculations of light scattering from a reentrant fractal surface.

© 1997 Optical Society of America

History
Original Manuscript: April 19, 1996
Revised Manuscript: October 29, 1996
Published: May 20, 1997

Citation
Alberto Mendoza-Suárez and Eugenio R. Méndez, "Light scattering by a reentrant fractal surface," Appl. Opt. 36, 3521-3531 (1997)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-36-15-3521


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. R. Méndez, K. A. O’Donnell, “Observation of depolarization and backscattering enhancement in light scattering from Gaussian random surfaces,” Opt. Commun. 61, 91–95 (1987). [CrossRef]
  2. K. A. O’Donnell, E. R. Méndez, “Experimental study of scattering from characterized random surfaces,” J. Opt. Soc. Am. A 4, 1194–1205 (1987). [CrossRef]
  3. B. J. Kachoyan, C. Macaskill, “Acoustic scattering from an arbitrary rough surface,” J. Acoust. Soc. Am. 82, 1720–1726 (1987). [CrossRef]
  4. M. Nieto-Vesperinas, J. M. Soto-Crespo, “Monte Carlo simulations for scattering of electromagnetic waves from perfectly conductive random rough surface,” Opt. Lett. 12, 979–981 (1987). [CrossRef] [PubMed]
  5. E. I. Thorsos, “The validity of the Kirchhoff approximation for rough surface scattering using a Gaussian roughness spectrum,” J. Acoust. Soc. Am. 83, 78–92 (1988). [CrossRef]
  6. A. A. Maradudin, E. R. Méndez, T. Michel, “Backscattering effects in the elastic scattering of p-polarized light from a large amplitude random metallic grating,” Opt. Lett. 14, 151–153 (1989). [CrossRef]
  7. M. Saillard, D. Maystre, “Scattering from metallic and dielectric rough surfaces,” J. Opt. Soc. Am. A 7, 982–990 (1990). [CrossRef]
  8. D. Maystre, “Integral methods,” in Electromagnetic Theory of Gratings, R. Petit, ed. (Springer-Verlag, New York, 1980), pp. 63–100. [CrossRef]
  9. K. K. Mei, J. G. Van Bladel, “Scattering by perfectly-conducting rectangular cylinders,” IEEE Trans. Antennas Propag. AP-11, 185–192 (1963). [CrossRef]
  10. P. Vincent, “Differential methods,” in Electromagnetic Theory of Gratings, R. Petit, ed. (Springer-Verlag, New York, 1980), pp. 101–121.
  11. F. Moreno, F. González, J. M. Saiz, P. J. Valle, D. L. Jordan, “Experimental study of copolarized light scattering by spherical metallic particles in conducting flat substrates,” J. Opt. Soc. Am. A 10, 141–149 (1993). [CrossRef]
  12. P. J. Valle, F. González, F. Moreno, “Electromagnetic wave scattering from conducting cylindrical structures on flat surfaces: study by means of the extinction theorem,” Appl. Opt. 33, 512–523 (1994). [CrossRef] [PubMed]
  13. A. A. Maradudin, T. Michel, A. R. McGurn, E. R. Méndez, “Enhanced backscattering of light from a random grating,” Ann. Phys. (N.Y.) 203, 255–307 (1990). [CrossRef]
  14. T. M. Apostol, Mathematical Analysis (Addison-Wesley, Reading, Mass., 1964), pp. 169–176.
  15. Ref. 14, p. 315.
  16. A. Mendoza-Suárez, “Métodos regurosos para el esparcimiento de luz por superficies rugosas y medios estratificados con perfiles arbitrarios,” Ph.D. dissertation (Centro de Investigacion Cientifica y de Educación Superior de Ensenada (1996). Procedures to deal with singular points have also been discussed by A. W. Glisson, D. R. Wilton, “Simple and efficient numerical methods for problems of electromagnetic radiation and scattering from surfaces,” IEEE Trans. Antennas Propag. AP-28, 593–603 (1980).
  17. Yon-Lin Kok, “General solution to the multiple-metallic-grooves scattering problem: the fast-polarization case,” Appl. Opt. 32, 2573–2581 (1993). [CrossRef] [PubMed]
  18. E. Jakeman, J. G. McWhirter, “Correlation function dependence of scintillation behind a deep random phase screen,” J. Phys. A 10, 1599–1643 (1977). [CrossRef]
  19. C. L. Rino, “A power law phase screen model for ionospheric scintillations 1. Weak scatter,” Radio Sci. 14, 1135–1146 (1979). [CrossRef]
  20. C. L. Rino, “A power law phase screen model for ionospheric scintillations 2. Strong scatter,” Radio Sci. 14, 1147–1155 (1979). [CrossRef]
  21. M. V. Berry, “Diffractals,” J. Phys. A 12, 781–797 (1979). [CrossRef]
  22. M. V. Berry, Z. V. Lewis, “On the Weierstrauss-Mandelbrot fractal function,” Proc. R. Soc. London Ser. A 370, 459–484 (1980). [CrossRef]
  23. M. V. Berry, T. M. Blackwell, “Diffractal echoes,” J. Phys. A 14, 3101–3110 (1981). [CrossRef]
  24. E. Jakeman, “Scattering by a corrugated random surface with fractal slope,” J. Phys. A 15, L55–L59 (1982). [CrossRef]
  25. E. Jakeman, “Fresnel scattering by a corrugated random surface with fractal slope,” J. Opt. Soc. Am. 72, 1034–1041 (1982). [CrossRef]
  26. E. Jakeman, “Fraunhofer scattering by a subfractal diffuser,” Opt. Acta 30, 1207–1212 (1983). [CrossRef]
  27. D. L. Jaggard, Y. Kim, “Diffraction by band-limited fractal screens,” J. Opt. Soc. Am. A 4, 1055–1062 (1987). [CrossRef]
  28. B. J. West, “Sensing scaled scintillations,” J. Opt. Soc. Am. A 7, 1074–1100 (1990). [CrossRef]
  29. D. L. Jaggard, X. Sun, “Scattering from fractally corrugated surfaces,” J. Opt. Soc. Am. A 7, 1131–1139 (1990). [CrossRef]
  30. C. J. R. Sheppard, “Scattering by fractal surfaces with an outer scale,” Opt. Commun. 122, 178–188 (1996). [CrossRef]
  31. D. L. Jaggard, X. Sun, “Fractal surface scattering: a generalized Rayleigh solution,” J. Appl. Phys. 68, 5456–5462 (1990). [CrossRef]
  32. A. A. Maradudin, T. Michel, “Role of the surface height correlation function in the enhanced backscattering of light from random metallic surfaces,” in Wave Propagation and Scattering in Varied Media II, V. K. Varadan, ed., Proc. SPIE1558, 233–250 (1991). [CrossRef]
  33. S. Savaidis, P. Frangos, D. L. Jaggard, K. Hizanidis, “Scattering from fractally corrugated surfaces: an exact approach,” Opt. Lett. 20, 2357–2359 (1995). [CrossRef] [PubMed]
  34. J. Feder, Fractals (Plenum, New York, 1988), p. 15.
  35. D. E. Gray, ed., American Institute of Physics Handbook, 3rd ed., (McGraw-Hill, New York, 1972), p. 6–138.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited