OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 36, Iss. 15 — May. 20, 1997
  • pp: 3532–3537

Qualitative light-scattering angular correlations of conglomerate particles

Gorden Videen, Paul Pellegrino, Dat Ngo, Paul Nachman, and Ronald G. Pinnick  »View Author Affiliations


Applied Optics, Vol. 36, Issue 15, pp. 3532-3537 (1997)
http://dx.doi.org/10.1364/AO.36.003532


View Full Text Article

Acrobat PDF (256 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The scattering phase functions of micrometer-sized glycerol droplets containing spherical latex inclusions undergo random fluctuations with time. We measure scattering intensities in the near-forward and near-backward scattering directions and find them to have strong positive correlations during some time periods and strong negative correlations during other time periods. The characteristic time constants of these correlations are of the order of seconds. We calculate scattering correlations from two types of scattering system. Correlations from a two-sphere system generally are positive, whereas correlations from a sphere containing a single spherical inclusion may be both positive and negative. Calculations of correlations from our experimental data are consistent with diffusion of inclusions within the host droplet, rather than interference effects between the inclusions.

© 1997 Optical Society of America

Citation
Gorden Videen, Paul Pellegrino, Dat Ngo, Paul Nachman, and Ronald G. Pinnick, "Qualitative light-scattering angular correlations of conglomerate particles," Appl. Opt. 36, 3532-3537 (1997)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-36-15-3532


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. A. Ashkin and J. M. Dziedzic, “Observation of resonances in the radiation pressure on dielectric spheres,” Phys. Rev. Lett. 38, 1351–1354 (1977).
  2. A. Ashkin and J. M. Dziedzic, “Observation of optical resonances of dielectric spheres by light scattering,” Appl. Opt. 20, 1803–1814 (1981).
  3. P. Chýlek, “Partial wave resonances and the ripple structure of the Mie normalized extinction cross section,” J. Opt. Soc. Am. A 66, 285–287 (1976).
  4. P. Chýlek, J. T. Kiehl, and M. K. W. Ko, “Optical levitation and partial wave resonances,” Phys. Rev. A 18, 2229–2233 (1978).
  5. P. Chýlek, J. T. Kiehl, and M. K. W. Ko, “Narrow resonance structure in the Mie scattering characteristics,” Appl. Opt. 17, 3019–3021 (1978).
  6. H. S. Bennett and G. J. Rosasco, “Resonances in the efficiency factor for absorption: Mie scattering theory,” Appl. Opt. 17, 491–493 (1978).
  7. P. R. Conwell, P. W. Barber, and C. K. Rushfirth, “Resonant spectra of dielectric spheres,” J. Opt. Soc. Am. A 1, 62–67 (1984).
  8. J. R. Probert-Jones, “Resonance component of backscattering by large dielectric sphere,” J. Opt. Soc. Am. A 1, 822–829 (1984).
  9. H. S. Bennett and G. J. Rosasco, “Internal field resonance structure: implications for optical absorption and scattering by microscopic particles,” J. Opt. Soc. Am. A 1, 62–67 (1984).
  10. S. C. Hill and R. E. Benner, “Morphology-dependent resonances associated with stimulated processes in microspheres,” J. Opt. Soc. Am. B 3, 1509–1514 (1986).
  11. G. Videen and W. S. Bickel, “Light-scattering resonances in small spheres,” Phys. Rev. A 45, 6008–6012 (1992).
  12. P. Chýlek, D. Ngo, and R. G. Pinnick, “Resonance structure of composite and slightly absorbing spheres,” J. Opt. Soc. Am. A 9, 775–780 (1992).
  13. D. Ngo and R. G. Pinnick, “Suppression of scattering resonances in inhomogeneous microdroplets,” J. Opt. Soc. Am. A 11, 1352–1359 (1994).
  14. J. Gu, T. E. Ruekgauer, J.-G. Xie, and R. L. Armstrong, “Effect of particulate seeding on microdroplet angular scattering,” Opt. Lett. 18, 1293–1295 (1993).
  15. J.-G. Xie, T. E. Ruekgauer, R. L. Armstrong, and R. G. Pinnick, “Suppression of stimulated Raman scattering from microdroplets by seeding with nanometer-sized latex particles,” Opt. Lett. 18, 340–342 (1993).
  16. H.-B. Lin, A. L. Huston, J. D. Eversole, A. J. Campillo, and P. Chýlek, “Internal scattering effects on microdroplet resonant emission structure,” Opt. Lett. 17, 970–972 (1992).
  17. R. L. Armstrong, J.-G. Xie, T. E. Ruekgauer, J. Gu and R. G. Pinnick, “Effects of submicrometer-sized particles on microdroplet lasing,” Opt. Lett. 18, 119–121 (1993).
  18. R. L. Armstrong, J.-G. Xie, T. E. Ruekgauer and R. G. Pinnick, “Energy-transfer-assisted lasing from microdroplets seeded with fluorescent sol,” Opt. Lett. 17, 943–945 (1992).
  19. T. Kaiser, G. Roll, and G. Schweiger, “Enhancement of the Raman spectrum of optically levitated microspheres by seeded nanoparticles,” J. Opt. Soc. Am. B 12, 281–286 (1995).
  20. J. D. Eversole, H-B. Lin and A. J. Campillo, “Input/output resonance correlation in laser-induced emission from microdroplets,” J. Opt. Soc. Am. B 12, 287–296 (1995).
  21. B. V. Bronk, M. J. Smith, and S. Arnold, “Photon-correlation spectroscopy for small spherical inclusions in a micrometer-sized electrodynamically levitated droplet,” Opt. Lett. 18, 93–95 (1993).
  22. C. Liang and Y. T. Lo, “Scattering by two spheres,” Radio Sci. 2, 1481–1495 (1967).
  23. J. H. Bruning and Y. T. Lo, “Multiple scattering of EM waves by spheres parts I and II,” IEEE Trans. Antennas Propag. AP-19, 378–400 (1971).
  24. A. R. Jones, “Electromagnetic wave scattering by assemblies of particles in the Rayleigh approximation,” Proc. R. Soc. London, Ser. A 366, 111–127 (1979).
  25. J. M. Gérardy and M. Ausloos, “Absorption spectrum of clusters of spheres from the general solution of Maxwell’s equations: the long wavelength limit,” Phys. Rev. B 22, 4950–4959 (1980).
  26. R. T. Wang, J. M. Greenberg, and D. W. Schuerman, “Experimental results of dependent light scattering by two spheres,” Opt. Lett. 6, 543–545 (1981).
  27. F. Borghese, P. Denti, R. Saija, G. Toscano, and O. I. Sindoni, “Multiple electromagnetic scattering from a cluster of spheres. I. Theory,” Aerosol Sci. Technol. 3, 227–235 (1984).
  28. K. A. Fuller and G. W. Kattawar, “Consummate solution to the problem of classical electromagnetic scattering by an ensemble of spheres. I. linear chains,” Opt. Lett. 13, 90–92 (1988).
  29. K. A. Fuller and G. W. Kattawar, “Consummate solution to the problem of classical electromagnetic scattering by an ensemble of spheres. I. clusters of arbitrary configuration,” Opt. Lett. 13, 1063–1065 (1988).
  30. M. F. Iskander, H. Y. Chen, and J. E. Penner, “Optical scattering and absorption by branched chains of aerosols,” Appl. Opt. 28, 3083–3091 (1989).
  31. D. W. Mackowski, “Analysis of radiative scattering for multiple sphere configurations,” Proc. R. Soc. London Ser. A 433, 599–614 (1991).
  32. M. I. Mishchenko, “Light scattering by randomly oriented axially symmetric particles,” J. Opt. Soc. Am. A 8, 871–882 (1991).
  33. J. C. Ku and K.-H. Shim, “A comparison of solutions for light scattering and absorption by agglomerated or arbitrarily-shaped particles,” J. Quant. Spectrosc. Radiat. Transfer 47, 201–220 (1992).
  34. K. A. Fuller, “Optical resonances and two-sphere systems,” Appl. Opt. 33, 4716–4731 (1991).
  35. M. I. Mishchenko and D. W. Mackowski, “Light scattering by randomly oriented bispheres,” Opt. Lett. 19, 1604–1606 (1994).
  36. K. A. Fuller, “Scattering and absorption cross sections of compounded spheres. I. Theory for external aggregation,” J. Opt. Soc. Am. A 11, 3251–3260 (1994).
  37. K. A. Fuller, “Scattering and absorption cross sections of compounded spheres. II. Calculations for external aggregation,” J. Opt. Soc. Am. A 12, 881–892 (1995).
  38. S. C. Hill, H. I. Saleheen, and K. A. Fuller, “Volume current method for modeling light scattering by inhomogeneously perturbed spheres,” J. Opt. Soc. Am. A 12, 905–915 (1995).
  39. D. W. Mackowski, “Calculation of total cross sections of multiple-sphere clusters,” J. Opt. Soc. Am. A 11, 2851–2861 (1994).
  40. J. G. Fikioris and N. K. Uzunoglu, “Scattering from an eccentrically stratified dielectric sphere,” J. Opt. Soc. Am. 69, 1359–1366 (1979).
  41. F. Borghese, P. Denti, and R. Saija, “Optical properties of spheres containing a spherical eccentric inclusion,” J. Opt. Soc. Am. A 9, 1327–1335 (1992).
  42. F. Borghese, P. Denti, and R. Saija, “Optical properties of spheres containing several spherical inclusions,” Appl. Opt. 33, 484–493 (1994).
  43. K. A. Fuller, “Scattering and absorption cross sections of compounded spheres. III. Spheres containing arbitrarily located spherical inhomogeneities,” J. Opt. Soc. Am. A 12, 893–904 (1995).
  44. M. M. Mazumder, S. C. Hill, and P. W. Barber, “Morphology-dependent resonances in inhomogeneous spheres: comparison of the layered T-matrix method and the time-independent perturbation method,” J. Opt. Soc. Am. A 9, 1844–1853 (1992).
  45. N. C. Skaropoulos, M. P. Ioannidow, and D. P. Chrissoulidis, “Indirect mode-matching solution to scattering from a dielectric sphere with an eccentric inclusion,” J. Opt. Soc. Am. A 11, 1859–1866 (1994).
  46. G. Videen, D. Ngo, and P. Chýlek, “Effective-medium predictions of absorption by graphitic carbon in water droplets,” Opt. Lett. 19, 1675–1677 (1994).
  47. G. Videen, D. Ngo, P. Chýlek, and R. G. Pinnick, “Light scattering from a sphere with an irregular inclusion,” J. Opt. Soc. Am. A 12, 922–928 (1995).
  48. K. Fuller, “Morphology-dependent resonances in eccentrically stratified spheres,” Opt. Lett. 19, 1272–1274 (1994).
  49. S. Arnold, “Spectroscopy of single levitated micron sized particles,” in Optical Effects Associated with Small Particles P. W. Barber and R. K. Chang, eds. (World Scientific, Singapore, 1988), Chap. 2, pp. 66–127.
  50. T. W. Chen, “Simple formula for light scattering by large spherical dielectric,” Appl. Opt. 32, 7568–7571 (1993).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited