OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 36, Iss. 15 — May. 20, 1997
  • pp: 3551–3559

Observation of Raman scattering by cloud droplets in the atmosphere

S. Harvey Melfi, Keith D. Evans, Jing Li, David Whiteman, Richard Ferrare, and Geary Schwemmer  »View Author Affiliations


Applied Optics, Vol. 36, Issue 15, pp. 3551-3559 (1997)
http://dx.doi.org/10.1364/AO.36.003551


View Full Text Article

Enhanced HTML    Acrobat PDF (451 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In a recent field campaign, the NASA Goddard Space Flight Center scanning Raman lidar measured, in the water vapor channel, Raman scattering from low-level clouds well in excess of 100% relative humidity. The excess scattering has been interpreted to be spontaneous Raman scattering by liquid water in the cloud droplets. A review of research on Raman scattering by microspheres indicates that the technique may provide a remote method to observe cloud liquid water. The clouds studied appear, from Mie scattering, to have two distinct layers with only the upper layer showing significant Raman scattering from liquid water in the droplets.

© 1997 Optical Society of America

History
Original Manuscript: April 4, 1996
Revised Manuscript: November 5, 1996
Published: May 20, 1997

Citation
S. Harvey Melfi, Keith D. Evans, Jing Li, David Whiteman, Richard Ferrare, and Geary Schwemmer, "Observation of Raman scattering by cloud droplets in the atmosphere," Appl. Opt. 36, 3551-3559 (1997)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-36-15-3551


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. H. Melfi, D. N. Whiteman, R. Ferrare, “Observation of atmospheric fronts using Raman lidar moisture measurements,” J. Appl. Meteorol. 28, 789–806 (1989). [CrossRef]
  2. A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction, backscatter, and lidar ratio,” Appl. Phys. B 55, 18–28 (1992). [CrossRef]
  3. D. N. Whiteman, S. H. Melfi, R. A. Ferrare, “Raman lidar system for the measurement of water vapor and aerosols in the Earth’s atmosphere,” Appl. Opt. 31, 3068–3082 (1992). [CrossRef] [PubMed]
  4. J. E. M. Goldsmith, S. E. Bisson, R. A. Ferrare, K. D. Evans, D. N. Whiteman, S. H. Melfi, “Raman lidar profiling of atmospheric water vapor: simultaneous measurements with two collocated systems,” Bull. Am. Meteorol. Soc. 75, 975–982 (1994). [CrossRef]
  5. R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, F. J. Schmidlin, D. O’C. Starr, “A comparison of water vapor measurements made by Raman lidar and radiosondes,” J. Atmos. Ocean. Technol. 12, 1177–1195 (1995). [CrossRef]
  6. R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, “Raman lidar measurements of Pinatubo aerosols over southeastern Kansas during November-December 1991,” Geophys. Res. Lett. 19, 1599–1602 (1992). [CrossRef]
  7. R. A. Ferrare, D. N. Whiteman, S. H. Melfi, “Raman lidar measurements of temperature in the troposphere and lower stratosphere,” in Optical Remote Sensing of the Atmosphere, Vol. 4 of 1990 OSA Technical Digest Series (Optical Society of America, Washigton, D.C., 1990), pp. 188–191.
  8. K. D. Evans, S. H. Melfi, R. A. Ferrare, D. N. Whiteman, “Upper tropospheric temperature measurements using a Raman lidar,” Appl. Opt. 36, 2594–2602 (1997). [CrossRef] [PubMed]
  9. C. R. Philbrick, F. J. Schmidlin, K. U. Grossman, G. Lange, D. Offerman, K. D. Baker, D. Krankowsky, U. von Zahn, “Density and temperature structure over Northern Europe,” J. Atmos. Terr. Phys. 47, 159–172 (1985). [CrossRef]
  10. G. Vaughan, D. P. Wareing, S. J. Pepler, L. Thomas, V. Mitev, “Atmospheric temperature measurements made by rotational Raman scattering,” Appl. Opt. 32, 2758–2764 (1993). [CrossRef] [PubMed]
  11. R. Thurn, W. Kiefer, “Structural resonances observed in the Raman spectra of optically levitated droplets,” Appl. Opt. 24, 1515–1519 (1985). [CrossRef]
  12. G. Schweigar, “Raman scattering on microparticles: size dependence,” J. Opt. Soc. Am. B 8, 1770–1778 (1991). [CrossRef]
  13. R. G. Pinnick, A. Biswas, R. L. Armstrong, H. Latifi, E. Creegan, V. Srivastava, G. Fernandez, “Stimulated Raman scattering in micrometer-sized droplets: measurements of angular scattering characteristics,” Opt. Lett. 12, 1099–1101 (1988). [CrossRef]
  14. V. Srivastava, M. A. Jarzembski, “Laser-induced stimulated Raman scattering in the forward direction of a droplet: comparison of Mie theory with geometrical optics,” Opt. Lett. 16, 126–128 (1991). [CrossRef] [PubMed]
  15. A. Serpenguzel, J. C. Swindal, R. K. Chang, W. P. Acker, “Two-dimensional imaging of sprays with fluorescence, lasing, and stimulated Raman scattering,” Appl. Opt. 31, 3543–3551 (1992). [CrossRef] [PubMed]
  16. A. Serpenguzel, G. Chen, R. K. Chang, W.-f. Hsieh, “Heuristic model for the growth and coupling of nonlinear processes in droplets,” J. Opt. Soc. Am. B 9, 871–883 (1992). [CrossRef]
  17. D. H. Leach, R. K. Chang, W. P. Acker, S. C. Hill, “Third-order sum-frequency generation in droplets: experimental results,” J. Opt. Soc. Am. B 10, 34–45 (1993). [CrossRef]
  18. R. J. Charlson, S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. Coakley, J. E. Hansen, D. J. Hofmann, “Climate forcing by anthropogenic aerosols,” Science 255, 423–430 (1992). [CrossRef] [PubMed]
  19. D. N. Whiteman, W. F. Murphy, N. W. Walsh, K. D. Evans, “Temperature sensitivity of an atmospheric Raman lidar system based on a XeF excimer laser,” Opt. Lett. 18, 247–249 (1993). [CrossRef]
  20. S. H. Melfi, “Remote measurements of the atmosphere using Raman scattering,” Appl. Opt. 11, 1605–1610 (1972). [CrossRef] [PubMed]
  21. A. D. Collard, S. A. Ackerman, W. L. Smith, X. Ma, H. E. Revercomb, R. O. Knuteson, S.-C. Lee, “Cirrus cloud properties derived from high spectral resolution infrared spectrometry during FIRE II. Part III. Ground-based HIS results,” J. Atmos. Sci. 52, 4264–4275 (1995). [CrossRef]
  22. N. S. Higdon, E. V. Browell, P. Ponsardin, “Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols,” Appl. Opt. 33, 6422–6438 (1994). [CrossRef] [PubMed]
  23. S. Ismail, E. V. Browell, “Airborne and spaceborne lidar measurements of water vapor profiles: a sensitivity analysis,” Appl. Opt. 28, 3603–3614 (1989); Appl. Opt. 28, 4981(E) (1989).
  24. J. R. Scherer, M. K. Go, S. Kint, “Raman spectra and structure of water from -10 to 90°,” J. Phys. Chem. 78, 1304–1313 (1974). [CrossRef]
  25. W. F. Murphy, “The rovibrational Raman spectrum of water vapour ν1 and ν3,” Mol. Phys. 36, 727–732 (1978). [CrossRef]
  26. R. B. Slusher, V. E. Derr, “Temperature dependence and cross sections of some Stokes and anti-Stokes Raman lines in ice lh,” Appl. Opt. 14, 2116–2120 (1975). [CrossRef] [PubMed]
  27. A. Weber, Raman Spectroscopy of Gases and Liquids, Vol. 11 of Topics in Current Physics (Springer-Verlag, Berlin, 1979). [CrossRef]
  28. W. A. Senior, W. K. Thompson, “Assignment of the infra-red and Raman bands of liquid water,” Nature (London) 205, 170 (1965).
  29. M. Kerker, S. D. Druger, “Raman and fluorescent scattering by molecules embedded in spheres with radii up to several multiples of the wavelength,” Appl. Opt. 18, 1172–1179 (1979). [CrossRef] [PubMed]
  30. R. R. Rogers, M. K. Yau, A Short Course in Cloud Physics, 3rd ed. (Pergamon, Oxford, 1989).
  31. U. Wandinger, “Influence of multiple scattering on DIAL, Raman, and high spectral resolution lidars—a common MUSCLE study,” in Abstract Book, 18th International Laser Radar Conference (International Committee for Laser Atmospheric Studies, Berlin, Germany, 1996), p. 80.
  32. C. J. Grund, E. W. Eloranta, “University of Wisconsin high spectral resolution lidar,” Opt. Eng. 30, 6–12 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited