OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 36, Iss. 15 — May. 20, 1997
  • pp: 3565–3576

Coherent anti-Stokes Raman scattering velocity and translational temperature measurements in resistojets

Edward J. Beiting  »View Author Affiliations


Applied Optics, Vol. 36, Issue 15, pp. 3565-3576 (1997)
http://dx.doi.org/10.1364/AO.36.003565


View Full Text Article

Enhanced HTML    Acrobat PDF (379 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Coherent anti-Stokes Raman scattering is demonstrated as a quantitative diagnostic in low-density flows by mapping H2 velocity and translational temperature inside and outside the nozzle of a resistojet. A spatial resolution of better than 35 µm along the flow direction and 350 µm transverse to it was attained in a density as low as 5 × 1015 cm-3. The accuracy of the velocity, inferred from the Doppler shift of the Q(1) Raman resonance, was limited by the scan linearity of the laser to ±0.2 km/s. Translational temperatures, inferred from linewidths and complicated by saturation and ac Stark effects, had an accuracy of ∼20%. A discussion of applicability to molecular nitrogen is presented.

© 1997 Optical Society of America

History
Original Manuscript: April 19, 1996
Revised Manuscript: October 11, 1996
Published: May 20, 1997

Citation
Edward J. Beiting, "Coherent anti-Stokes Raman scattering velocity and translational temperature measurements in resistojets," Appl. Opt. 36, 3565-3576 (1997)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-36-15-3565


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. W. Crofton, “Advanced diagnostic techniques for electric propulsion,” in 29th Joint Propulsion Conference (American Institute of Aeronautics and Astronautics, Washington, D.C., 1993), paper AIAA 93-1794.
  2. D. M. Zube, R. M. Myers, “Techniques for spectroscopic measurements in an arcjet nozzle,” J. Propulsion Power 8, 254–256 (1992). [CrossRef]
  3. There are many other examples of emisson spectroscopy studies on arcjet flows. Most of these are AIAA conference papers available from the American Institute of Aeronautics and Astronautics, Washington, D.C. A representative sample follows. D. H. Manzella, F. M. Curran, D. M. Zube, “Preliminary plume characteristics of an arcjet thruster,” paper AIAA 90-2645; S. W. Janson, R. P. Welle, D. R. Schulthess, R. B. Cohen, “Arcjet plume characterization II—Optical diagnostic results,” paper AIAA 90-2643; D. M. Zube, R. M. Myers, “Nonequilibrium in a low power arcjet nozzle,” paper AIAA 91-2113; M. W. Crofton, “Spectral irradiance of the 1 kW arcjet from 80 to 500 nm,” paper AIAA 92-3237; W. A. Hoskins, A. E. Kull, G. W. Butler, “Measurement of population and temperature profiles in an arcjet plume,” paper AIAA 92-3240; D. M. Zube, M. Auweter-Kurtz, “Spectroscopic arcjet diagnostic under thermal equilibrium and nonequilibrium conditions,” paper AIAA 93-1792; D. M. Zube, E. W. Masserschmid, “Spectroscopic temperature and density measurements in a low power arcjet plume,” paper AIAA 94-2744; A. D. Gallimore, S-W. Kim, J. E. Foster, L. B. King, F. S. Galczinski, “Near and far-field plume studies of a 1 kW arcjet,” paper AIAA 94-3137; H. A. Habiger, M. Auweter-Kurtz, H. L. Kurtz, “Investigation of arc jet plumes with Fabry-Perot interferometry,” paper AIAA 94-3300; W. A. Hargus, M. M. Micci, R. A. Spores, “Interior spectroscopic investigation of the propellant energy modes in an arcjet nozzle,” paper AIAA 94-3302; P. V. Storm, M. A. Cappelli, “High spectral resolution emission study of a low power hydrogen arcjet plume,” paper AIAA 95-1960; G. W. Butler, I. D. Boyd, M. A. Cappelli, “Non-equilibrium flow phenomena in low power hydrogen arcjets,” paper AIAA 95-2819.
  4. D. A. Erwin, G. C. Pham-Van-Diep, W. D. Deininger, “Laser-induced fluorescence measurements of flow velocity in high-power arcjet thruster plumes,” AIAA J. 29, 1298–1303 (1991). [CrossRef]
  5. W. M. Ruyten, D. Keefer, “Two-beam multiplexed laser-induced fluorescence measurements of an argon arcjet plume,” AIAA J. 31, 2083–2089 (1993). [CrossRef]
  6. J. G. Liebeskind, R. K. Hanson, M. A. Cappelli, “Laser-induced fluorescence diagnostic for temperature and velocity measurements in a hydrogen arcjet plume,” Appl. Opt. 32, 6117–6127 (1993). [CrossRef] [PubMed]
  7. J. G. Liebeskind, R. K. Hanson, M. A. Cappelli, “Experimental investigation of velocity slip near an arcjet exit plane,” AIAA J. 33, 373–375 (1995). [CrossRef]
  8. There are many other examples of LIF from excited states of species in arcjet flows. Most of these are AIAA conference papers available from the American Institute of Aeronautics and Astronautics, Washington, D.C. A representative sample follows.G. C. Pham-Van-Diep, D. A. Erwin, W. D. Deininger, “Velocity mapping in a 30-kW arcjet plume using laser-induced fluorescence,” paper AIAA 89-2831; G. C. Pham-Van-Diep, D. A. Erwin, W. D. Deininger, “Velocity mapping in the plume of a 30-kW ammonia arcjet,” paper AIAA 90-1476; J. G. Liebeskind, R. K. Hanson, M. A. Cappelli, “Velocity measurements in a hydrogen arcjet using LIF,” paper AIAA 91-2112; M. W. Crofton, R. P. Welle, S. W. Janson, R. B. Cohen, “Rotational and vibrational temperatures in the plume of a 1 kW arcjet,” paper AIAA 91-1491; J. G. Liebeskind, R. K. Hanson, M. A. Cappelli, “Laser-induced fluorescence of atomic hydrogen in an arcjet thruster,” paper AIAA 92-0678; W. M. Ruyten, “Characterization of electric thruster plumes using multiplexed laser induced fluorescence measurements,” paper AIAA 92-2965; J. G. Liebeskind, R. K. Hanson, M. A. Cappelli, “Plume characteristics of an arcjet thruster,” paper AIAA 93-2530; J. G. Liebeskind, R. K. Hanson, M. A. Cappelli, “Flow diagnostics of an arcjet using laser-induced fluorescence,” paper AIAA 92-3243; M. W. Crofton, R. P. Welle, S. W. Janson, R. B. Cohen, “Temperature, velocity and density studies in the 1 kW ammonia arcjet plume by LIF,” paper AIAA 92-3241; M. A. Cappelli, J. G. Liebeskind, R. K. Hanson, G. W. Butler, D. Q. King, “A comparison of arcjet plume properties to model predictions,” paper AIAA 93-0820; B. D. Keefer, D. Burtner, T. Moller, R. Rhodes, “Multiplexed laser induced fluorescence and non-equilibrium processes in arcjets,” paper AIAA 94-2656; D. Burtner, D. Keefer, W. Ruyten, “Experimental and numerical studies of a low-power arcjet operated on simulated ammonia,” paper AIAA 94-2869; P. V. Storm, M. A. Cappelli, “Laser-induced fluorescence measurements within an arcjet thruster nozzle,” paper AIAA 95-2381; J. A. Pobst, I. J. Wysong, R. A. Spores, “Laser induced fluorescence of ground state hydrogen atoms at nozzle exit of an arcjet thruster,” paper AIAA 95-1973.
  9. W. J. Marinelli, W. J. Kessler, M. G. Allen, “Copper atom based measurements of velocity and turbulence in arc jet flows,” in 29th Aerospace Sciences Meeting (American Institute of Aeronautics and Astronautics, Washington, D.C., 1991), paper AIAA 91-0358.
  10. J. E. Pollard, “Arcjet plume studies using molecular beam mass spectrometry,” in 23rd International Electric Propulsion Conference (Electric Rocket Propulsion Society, Columbus, Ohio, 1993), paper IPEC-93-132.
  11. J. E. Pollard, “Arcjet diagnostic by XUV absorption spectroscopy,” in 23rd Plasma and Lasers Conference (American Institute of Aeronautics and Astronautics, Washington, D.C., 1992), paper AIAA 92-2966.
  12. I. D. Boyd, D. R. Beattie, M. A. Cappelli, “Numerical and experimental investigations of low-density supersonic jets of hydrogen,” J. Fluid Mech. 280, 41–67 (1994). [CrossRef]
  13. E. J. Beiting, L. Garman, I. D. Boyd, D. B. Van Gilder, “CARS velocity and temperature measurements in a hydrogen resistojet: comparison with Monte Carlo calculations,” in 31st Joint Propulsion Conference (American Institute of Aeronautics and Astronautics, Washington, D.C., 1995), paper AIAA 95-2382.
  14. I. D. Boyd, D. B. Van Gilder, E. J. Beiting, R. B. Cohen, E. J. Pencil, S. D. Hersch, “Numerical and experimental studies of hydrogen and nitrogen flows in a resisto-jet,” in 24th International Electric Propulsion Conference, (Russian Space Agency, Moscow, 1995), paper IPEC-95-20.
  15. I. D. Boyd, D. G. Van Gilder, E. J. Beiting, “Computational and experimental investigations of rarefied flows in small nozzles,” AIAA J. 34, 2320–2326 (1996). [CrossRef]
  16. J. W. Nibler, G. A. Pubanz, “Coherent Raman spectroscopy of gases,” in Advances in Non-linear Spectroscopy, R. J. H. Clark, R. E. Hester, eds. (Wiley, New York, 1988).
  17. J. C. Luthe, E. J. Beiting, F. Y. Yueh, “Algorithms for calculating coherent anti-Stokes Raman spectra: application to several small molecules,” Comput. Phys. Commun. 42, 73–92 (1986). [CrossRef]
  18. S. Gaufres, S. Sportouch, “The Placzek-Teller coefficients bJ′K′JK for negative ΔJ,” J. Mol. Spectrosc. 39, 527–530 (1971). [CrossRef]
  19. The Boltzman factor and the partition function (state sum) are referenced from the lowest energy level in the molecule. Thus for ortho hydrogen and para nitrogen the lowest level is J = 1, the partition function is summed over odd levels only, nH2ortho=34n0 H2, and nN2para=23n0 N2. For para hydrogen and ortho nitrogen the lowest energy level is J = 0, the partition function is summed over even values only, nH2para=14n0 H2, and nN2ortho=13n0 N2.
  20. E. K. Gustafson, J. C. McDaniel, R. L. Byer, “CARS measurement of velocity in a supersonic jet,” IEEE J. Quantum Electron. QE-17, 2258–2259 (1981). [CrossRef]
  21. M. D. Duncan, P. Oesterlin, F. Konig, R. L. Byer, “Observation of saturation broadening of the coherent anti-Stokes Raman Spectrum (CARS) of acetylene in a pulsed molecular beam,” Chem. Phys. Lett. 80, 253–256 (1981). [CrossRef]
  22. L. A. Rahn, R. L. Farrow, M. L. Koszykowski, P. L. Mattern, “Observation of an optical Stark effect on vibrational and rotational transitions,” Phys. Rev. Lett. 45, 620–623 (1980). [CrossRef]
  23. M. A. Henesian, R. L. Byer, High-resolution CARS line-shape function,” J. Opt. Soc. Am. 68, 648–649 (1978).
  24. S. A. J. Druet, J.-P. E. Taran, Ch. J. Borde, “Line shape and Doppler broadening in resonant CARS and related nonlinear processes through a diagrammatic approach,” J. Phys. 40, 819–840 (1979). [CrossRef]
  25. D. A. Greenhalgh, “Quantitative CARS spectroscopy,” in Advances in Non-linear Spectroscopy, R. J. H. Clark, R. E. Hester, eds. (Wiley, New York, 1988).
  26. R. H. Dicke, “The effect of collisions upon the Doppler width of spectral lines,” Phys. Rev. 89, 472 (1953). [CrossRef]
  27. R. L. Farrow, R. P. Lucht, R. E. Palmer, “Spectral modeling for CARS diagnostics of combustion gases,” presented at the AIAA 19th Fluid Dynamics, Plasmas Dynamics and Lasers Conference, Honolulu, Hawaii, 8–10 June 1987, paper AIAA-87-1304.
  28. R. L. Farrow, R. E. Palmer, “Comparison of motionally narrowed coherent anti-Stokes Raman spectroscopy line shapes of H2 with hard- and soft-collision models,” Opt. Lett. 12, 984–986 (1987). [CrossRef] [PubMed]
  29. P. L. Varghese, R. K. Hanson, “Collisional narrowing effects on spectral line shapes measured at high resolution,” Appl. Opt. 23, 2376–2385 (1984). [CrossRef] [PubMed]
  30. M. A. Yuratich, “Effects of laser linewidth on coherent anti-Stokes Raman spectroscopy,” Mol. Phys. 38, 625–655 (1979). [CrossRef]
  31. R. L. Farrow, L. A. Rahn, “Interpreting coherent anti-Stokes Raman spectra measured with multimode Nd:YAG pump lasers,” J. Opt. Soc. Am. B 2, 903–907 (1985). [CrossRef]
  32. W. F. Murphy, W. Holzer, H. J. Bernstein, “Gas phase Raman intensities: a review of pre-laser data,” Appl. Spectrosc. 23, 211–218 (1969). [CrossRef]
  33. G. Herzberg, Molecular Spectra and Molecular Structure I. Spectra of Diatomic Molecules, 2nd ed. (Van Nostrand Reinhold, New York, 1950).
  34. L. A. Rahn, G. J. Rosasco, “Measurement of the density shift of the H2Q(0-5) transitions from 295 to 1000 K,” Phys. Rev. A 41, 3698–3706 (1990). [CrossRef] [PubMed]
  35. R. L. Farrow, L. A. Rahn, “Optical Stark effects in nonlinear Raman spectroscopy,” in Raman Spectroscopy: Linear and Nonlinear, J. Lascombe, P. V. Huong, eds. (Wiley, New York, 1982), pp. 159–160.
  36. R. L. Farrow, R. P. Lucht, R. E. Palmer, “Spectral modeling for CARS diagnostics of combustions gases,” presented at the AIAA 19th Fluid Dynamics, Plasma Dynamics and Laser Conference, Honolulu, Hawaii, 8–10 June 1987, paper AIAA-87-1304.
  37. R. P. Lucht, R. L. Farrow, “Calculation of saturation line shapes and intensities in coherent anti-Stokes Raman scattering spectra of nitrogen,” J. Opt. Soc. Am. B 5, 1243–1252 (1988). [CrossRef]
  38. R. P. Lucht, R. Farrow, “Saturation effects in coherent anti-Stokes Raman scattering spectroscopy of hydrogen,” J. Opt. Soc. Am. B 6, 2313–2325 (1989). [CrossRef]
  39. M. Pealat, M. Lefebvre, J.-P. E. Taran, P. L. Kelley, “Sensitivity of quantitative vibrational coherent anti-Stokes Raman spectroscopy to saturation and Stark shifts,” Phys. Rev. A 38, 1948–1965 (1988). [CrossRef] [PubMed]
  40. A. D. Wilson-Gordon, H. Friedmann, “Comment on saturation effects in high-resolution coherent anti-Stokes Raman spectroscopy of a pulsed molecular beam,” Chem. Phys. Lett. 89, 273–278 (1982). [CrossRef]
  41. M. Pealat, M. Lefebvre, “Temperature measurement by single-shot dual-line CARS in low-pressure flows,” Appl. Phys. B 53, 23–29 (1991). [CrossRef]
  42. Two fortran subroutines were used from carsfit from Sandia National Laboratories, Combustion Research Facility, Livermore, Calif. The Galatry subroutine was written by P. L. Varghese.
  43. L. A. Rahn, R. L. Farrow, G. J. Rosasco, “Measurement of the self-broadening of the H2Q(0-5) Raman transitions from 295 to 1000 K,” Phys. Rev. A 43, 6075–6088 (1991). [CrossRef] [PubMed]
  44. M. G. Littman, “Single-mode pulsed tunable dye laser,” Appl. Opt. 23, 4465–4468 (1984). [CrossRef] [PubMed]
  45. Model CTC1200M, Micro Kinetics, Irvine, Calif. 92714-5733.
  46. I. D. Boyd, Cornell University, Ithaca, N.Y. (personal communication, 1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited