OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 36, Iss. 18 — Jun. 20, 1997
  • pp: 3971–4033

Application of tunable excimer lasers to combustion diagnostics: a review

Erhard W. Rothe and Peter Andresen  »View Author Affiliations


Applied Optics, Vol. 36, Issue 18, pp. 3971-4033 (1997)
http://dx.doi.org/10.1364/AO.36.003971


View Full Text Article

Enhanced HTML    Acrobat PDF (10206 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Tunable excimer lasers are being used to produce species-, space-, and time-resolved images of complex gaseous media. These media may be analyzed for composition, density, temperature, or flow velocities. The techniques are, in general, highly selective, sensitive, and nonintrusive and are being made possible by recent technological developments in these UV lasers and in intensified cameras, imaging spectrographs, and fast digital image processing. We describe the needs for laser diagnostics in combustion, the physical mechanisms, the relevant spectroscopy, typical experimental setups, and equipment considerations. Precision and accuracy are discussed on the basis of some simple, but realistic, calculations intended to guide the experimentalist in design considerations and to reveal potential sources of errors in the often difficult conversion of raw data to values for such quantitative parameters as densities or temperatures. Finally we present an overview of previous results, select some examples that show the power of tunable excimer laser diagnostics in combustion, and present some suggestions for future directions.

© 1997 Optical Society of America

History
Original Manuscript: August 8, 1995
Revised Manuscript: July 31, 1996
Published: June 20, 1997

Citation
Erhard W. Rothe and Peter Andresen, "Application of tunable excimer lasers to combustion diagnostics: a review," Appl. Opt. 36, 3971-4033 (1997)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-36-18-3971


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. P. Beretta, M. Rashidi, J. C. Keck, “Turbulent flame propagation and combustion in spark ignition engines,” Combust. Flame 52, 217–245 (1983). [CrossRef]
  2. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed. (Gordon and Breach, Amsterdam, 1996).
  3. R. K. Hanson, J. M. Seitzman, P. H. Paul, “Planar laser-fluorescence imaging of combustion gases,” Appl. Phys. B 50, 441–454 (1990). [CrossRef]
  4. R. L. McKenzie, “Progress in laser-spectroscopic techniques for aerodynamic measurements—an overview,” AIAA J. 31, 465–477 (1993). [CrossRef]
  5. R. L. McKenzie, R. K. Hanson, A. C. Eckbreth, “Shedding new light on gas dynamics,” Aerosp. Am. 30(11), 20–25 (1992).
  6. This has not been done with tunable excimers. See, e.g., L. A. Melton, “Exciplex-based vapor/liquid visualization systems appropriate for automotive gasolines,” Appl. Spectrosc. 47, 782–786 (1993); “Planar liquid and gas visualization,” Ber. Bunsenges. Phys. Chem. 97, 1560–1567 (1993).
  7. See, e.g., I. Glassman, Combustion (Academic, London, 1987).
  8. A. Koch, A. Chryssostomou, P. Andresen, W. Bornscheuer, “Multi-species detection in spray flames with tunable excimer lasers,” Appl. Phys. B 56, 165–176 (1993). [CrossRef]
  9. J. G. Calvert, J. B. Heywood, R. F. Sawyer, J. H. Seinfeld, “Achieving acceptable air quality: some reflections on controlling vehicle emissions,” Science 261, 37–45 (1993). [CrossRef] [PubMed]
  10. M. Frodermann, “UV-laser spektroskopische Untersuchungen mit einem abstimmbaren Krypton-Fluorid Excimer-Laser am laminaren, vorgemischten Kohlenwasserstoff Flammen,” Ph.D. dissertation (Bielefeld University, Bielefeld, Germany, 1996).
  11. G. Laufer, R. L. McKenzie, W. M. Huo, “Radiative processes in air excited by an ArF laser,” Opt. Lett. 13, 99–101 (1988). [CrossRef] [PubMed]
  12. M. C. Drake, G. M. Rosenblatt, “Rotational Raman scattering from premixed and diffusion flames,” Combust. Flame 33, 179–196 (1978). [CrossRef]
  13. Y. Gu, E. W. Rothe, G. P. Reck, “One-dimensional imaging of H2 densities and of temperatures via rotational Raman scattering of narrow-band, 248-nm laser light,” Appl. Spectrosc. (to be published).
  14. H. Voges, LaVision Corp., Göttingen, Germany (private communication, 1995).
  15. W. Mückenheim, “Seven ways to combine two excimer lasers,” Laser Focus/Electrooptics 23(7), 56–67 (1987).
  16. J. Goldhar, J. Dickie, L. P. Bradley, L. D. Pleasance, “Injection locking of a xenon fluoride laser,” Appl. Phys. Lett. 31, 677–679 (1977). [CrossRef]
  17. J. Goldhar, J. R. Murray, “Injection locked, narrow-band KrF discharge laser using an unstable resonator cavity,” Opt. Lett. 1, 199–201 (1977). [CrossRef]
  18. B. Rückle, P. Lokai, U. Brinkmann, D. Basting, W. Mückenheim, “Tuning ranges of an injection locked excimer laser,” Opt. Laser Technol. 19, 153–157 (1987). [CrossRef]
  19. J. A. Wehrmeyer, S. Yeralan, K. S. Tecu, “Linewise Raman-Stokes/anti-Stokes temperature measurement in flames using an unintensified charge coupled device,” Appl. Phys. B 62, 21–27 (1996). [CrossRef]
  20. A. M. Wodtke, L. Hüwel, H. Schlüter, P. Andresen, “A simple way to improve an argon fluoride laser,” Rev. Sci. Instrum. 60, 801–802 (1989). [CrossRef]
  21. L. M. Hitchcock, G. S. Kim, G. P. Reck, E. W. Rothe, “Absorption of laser light in air in the 193 nm range: analysis of laser locking,” J. Quant. Spectrosc. Radiat. Transfer 44, 373–378 (1990). [CrossRef]
  22. J. A. Gray, R. L. Farrow, “Predissociation lifetimes of OH A2Σ+ (v′ = 3) obtained from optical–optical double resonance linewidth measurements,” J. Chem. Phys. 95, 7054–7060, (1991). [CrossRef]
  23. D. E. Heard, D. R. Crosley, J. B. Jeffries, “Rotationally dependent predissociation in the v′ = 3 level of OH,” J. Chem. Phys. 96, 4366–4371 (1992). [CrossRef]
  24. M. P. Lee, R. K. Hanson, “Calculations of O2 absorption and fluorescence at elevated temperatures for a broadband argon fluoride laser source at 193 nm,” J. Quant. Spectrosc. Radiat. Transfer 36, 425–440 (1986). [CrossRef]
  25. M. S. Smith, L. L. Price, W. D. Williams, “Laser-induced fluorescence diagnostics using a two-line excitation method,” AIAA J. 31, 478–482 (1993). [CrossRef]
  26. M. Versluis, M. Ebben, M. Drabbles, J. J. ter Meulen, “Frequency calibration in the ArF excimer laser tuning range using laser-induced fluorescence of NO,” Appl. Opt. 30, 5229–5234 (1991). [CrossRef] [PubMed]
  27. C. Schulz, B. Yip, V. Sick, J. Wolfrum, “A laser induced fluorescence scheme for imaging nitric oxide in engines,” Chem. Phys. Lett. 242, 259–264 (1995). [CrossRef]
  28. G. Grünefeld, P. Andresen, H. Schlüter, E. W. Rothe, “Operation of KrF and ArF tunable excimer lasers without Cassegrain optics,” Appl. Phys. B 62, 241–247 (1996). [CrossRef]
  29. W. Reckers, Y. W. Gu, E. W. Rothe, “Rayleigh scattering of excimer laser light from some simple molecules at 193 nm and 248 nm: the effect of polarization upon imaging diagnostics,” J. Raman Spectrosc. (to be published).
  30. J. A. Wehrmeyer, T. S. Cheng, R. W. Pitz, “Raman scattering measurements in flames using a tunable KrF laser,” Appl. Opt. 31, 1495–1504 (1992). [CrossRef] [PubMed]
  31. W. Reckers, L. Hüwel, G. Grünefeld, P. Andresen, “Spatially resolved multispecies and temperature analyses in hydrogen flames,” Appl. Opt. 32, 907–918 (1993). [CrossRef] [PubMed]
  32. W. Ketterle, A. Arnold, M. Schäfer, “Two-wavelength operation of a tunable KrF excimer laser—a promising technique for combustion diagnostics,” Appl. Phys. B 51, 91–93 (1990). [CrossRef]
  33. A. Arnold, W. Ketterle, H. Becker, J. Wolfrum, “Simultaneous single-shot imaging of OH and O2 using a two-wavelength laser,” Appl. Phys. B 51, 99–102 (1990). [CrossRef]
  34. A. D. Sappey, D. J. Funk, “Simultaneous detection of atomic and molecular hydrogen using a tunable ArF excimer laser,” Appl. Phys. B 56, 229–234 (1993). [CrossRef]
  35. M. D. Burrows, F. Bormann, P. Andresen, “Tunable sub-nanosecond KrF-Raman laser in the ultraviolet,” Appl. Phys. B 61, 451–460 (1995). [CrossRef]
  36. G. S. Kim, L. M. Hitchcock, E. W. Rothe, G. P. Reck, “Identification and imaging of hot O2 (v″ = 2, 3, or 4) in hydrogen flames using 193 nm and 210 nm-range light,” Appl. Phys. B 53, 180–186 (1991). [CrossRef]
  37. T. Dreier, A. Dreizler, J. Wolfrum, “The application of a Raman-shifted tunable KrF excimer laser for laser-induced fluorescence combustion diagnostics,” Appl. Phys. B 55, 381–387 (1992). [CrossRef]
  38. G. Meijer, A. M. Wodtke, H. Voges, L. Hüwel, H. Schlüter, P. Andresen, “State-selective detection of CO using a tunable excimer laser,” J. Chem. Phys. 89, 2588–2589 (1988). [CrossRef]
  39. D. G. Fletcher, “Two-photon excitation of atomic oxygen using a Raman-shifted ArF-excimer laser,” Appl. Phys. B 60, 61–65 (1995). [CrossRef]
  40. G. W. Faris, M. J. Dyer, “Raman-shifting ArF excimer laser radiation for vacuum-ultraviolet multiphoton spectroscopy,” J. Opt. Soc. Am. B 10, 2273–2286 (1993). [CrossRef]
  41. I. H. Malittson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55, 1205–1209 (1965). [CrossRef]
  42. A. Arnold, B. Lange, T. Bouché, T. Heitzmann, G. Schiff, W. Ketterle, P. Monkhouse, J. Wolfrum, “Absolute temperature fields in flames by 2D-LIF of OH using excimer lasers and CARS spectroscopy,” Ber. Bunsenges. Phys. Chem. 96, 1388–1393 (1992). [CrossRef]
  43. T. S. Cheng, J. A. Wehrmeyer, R. W. Pitz, “Simultaneous temparature and multispecies measurement in a lifted hydrogen diffusion flame,” Combust. Flame 91, 323–345 (1992). Originally presented at the Twenty-Ninth AIAA Aerospace Sciences Meeting, Reno, Nev., 7–10 January 1991, paper AIAA-91-0181. [CrossRef]
  44. S. Kampmann, T. Seeger, A. Leipertz, “Simultaneous coherent anti-Stokes Raman scattering and two-dimensional laser Rayleigh thermometry in a contained technical swirl combustor,” Appl.Opt. 34, 2780–2786 (1995).
  45. P. J. Hargis, “Trace detection of N2 by KrF-laser excited spontaneous Raman spectroscopy,” Appl. Opt. 20, 149–152 (1981). [CrossRef] [PubMed]
  46. R. L. McKenzie, “Rayleigh rejection filters for 193-nm ArF laser Raman spectroscopy,” Opt. Lett. 18, 995–997 (1993). [CrossRef] [PubMed]
  47. H. Kräamer, S. Kampmann, K.-U. Münch, A. Leipertz, “Simultaneous measurements of temperature and concentration fields inside technical combustion systems,” in Air Pollution and Visibility Measurements, C. Werner, P. Fabian, V. Klein, M. Tacke, K. Weber, eds., Proc. SPIE2506, 85–93 (1995).
  48. S. Kampmann, A. Leipertz, “Simultaneous measurement of temperature and OH concentration fields in turbulent combustion using one single laser source and one single CCD camera,” in Developments in Laser Techniques and Applications to Fluid Mechanics, R. J. Adrian, D. F. G. Durao, F. Durst, M. V. Heitor, M. Maeda, J. H. Whitelaw, eds. (Springer-Verlag, New York, 1996). [CrossRef]
  49. R. B. Miles, W. Lempert, “Two-dimensional measurement of density, velocity, and temperature in turbulent high-speed air flows by UV Rayleigh scattering,” Appl. Phys. B 51, 1–7 (1990). [CrossRef]
  50. J. N. Forkey, N. D. Finkelstein, W. R. Lempert, R. B. Miles, “Demonstration and characterization of filtered Rayleigh scattering for planar velocity measurements,” AIAA J. 34, 442–448 (1996). [CrossRef]
  51. P. Gölz, P. Andresen, “Atomic vapor for two-dimensional Rayleigh imaging experiments with a narrow-band KrF excimer laser,” Appl. Opt. 35, 6054–6061 (1996). [CrossRef] [PubMed]
  52. P. Andresen, H. Schlüter, D. Wolff, H. Voges, A. Koch, W. Hentschel, W. Oppermann, E. Rothe, “Identification and imaging of OH, (v″ = 0) and O2 (v″ = 6 or 7) in an automobile spark-ignition engine using a tunable KrF excimer laser,” Appl. Opt. 31, 7684–7689 (1992). [CrossRef] [PubMed]
  53. S. P. Nandula, T. M. Brown, W. A. Cole, R. W. Pitz, “Simultaneous multi-species multi-point measurements in H2-air flames using a narrow-band KrF excimer laser,” presented at AIAA/SAE/ASME/ASEE Twenty-Eighth Joint Propulsion Conference, Nashville, Tenn., 6–8 July 1992, paper AIAA-92-3348.
  54. R. W. Pitz, J. A. Wehrmeyer, J. M. Bowling, T.-S. Cheng, “Single pulse vibrational Raman scattering by a broadband KrF excimer laser in a hydrogen-air flame,” Appl. Opt. 29, 2325–2332 (1990). [CrossRef] [PubMed]
  55. I. Namer, R. W. Schefer, “Error estimates for Rayleigh scattering density and temperature measurements in premixed flames,” Exp. Fluids 3, 1–9 (1985). [CrossRef]
  56. D. A. Stephenson, “Raman cross sections of selected hydrocarbon and Freons,” J. Quant. Spectrosc. Radiat. Transfer 14, 1291–1301 (1974). [CrossRef]
  57. J. Burris, T. J. McGee, W. Heaps, “UV Raman cross sections in nitrogen,” Appl. Spectrosc. 46, 1076–1076 (1992). [CrossRef]
  58. J. H. Grinstead, G. Laufer, R. H. Krauss, J. C. McDaniel, “Calibration source for OH laser-induced fluorescence-density measurements with thermally dissociated H2O in atmospheric air,” Appl. Opt. 33, 1115–1119 (1994). [CrossRef] [PubMed]
  59. T. M. Quagliaroli, G. Laufer, J. C. McDaniel, “Calibration of OH laser-induced fluorescence temperature measurements using thermally dissociated H2O,” Appl. Phys. B 59, 635–638 (1994). [CrossRef]
  60. A. Arnold, H. Becker, R. Hemberger, W. Hentschel, W. Ketterle, M. Kollner, W. Meienburg, P. Monkhouse, H. Neckel, M. Schafer, K. P. Schindler, V. Sick, R. Suntz, J. Wolfrum, “Laser in situ monitoring of combustion processes,” Appl. Opt. 29, 4860–4872, (1990). [CrossRef] [PubMed]
  61. G. Grünefeld, V. Beushausen, P. Andresen, W. Hentschel, “A major origin of cyclic energy conversion variations in SI engines: cycle-by-cycle variations of the equivalence ratio and residual gas of the initial charge,” in 1994 SAE Congress and Exposition, paper 941880 (Society of Automotive Engineers, Warrendale, Pa., 1994); G. Grünefeld, “Laser diagnostics applied to practical combustion and flow systems,” Ph.D. dissertation (Bielefeld University, Bielefeld, Germany, 1994).
  62. R. B. Miles, J. J. Connors, P. J. Howard, E. C. Markovitz, G. J. Roth, “Proposed single-pulse two-dimensional temperature and density measurements of oxygen and air,” Opt. Lett. 13, 195–197 (1988). [CrossRef] [PubMed]
  63. P. Andresen, “Laser Induced Fluorescence Imaging Applications” in Measurement Techniques in Hypersonic Flows (von Karman Institute for Fluid Dynamics, Rhode Saint Genese, Belgium, 1990), pp. 421–449.
  64. A. Koch, H. Voges, P. Andresen, H. Schlüter, D. Wolff, W. Hentschel, W. Oppermann, E. Rothe, “Planar imaging of a flame and of internal combustion in an automobile engine using UV Rayleigh and fluorescence light,” Appl. Phys. B 56, 177–184 (1993). [CrossRef]
  65. G. S. Kim, L. M. Hitchcock, F. Siegler, E. W. Rothe, C. C. Tung, G. P. Reck, “Planar imaging of Rayleigh and fluorescence light from H2–air combustion inside a bomb using tunable 193 nm light,” Appl. Phys. B 56, 139–145 (1993). [CrossRef]
  66. R. W. Dibble, S. H. Stårner, A. R. Masri, R. S. Barlow, “An improved method of data acquisition and reduction of laser Raman–Rayleigh and fluorescence scattering from multispecies,” Appl. Phys. B 51, 39–43 (1990). [CrossRef]
  67. W. K. Bischel, G. Black, “Dependence of Raman scattering cross section from 200–600 nm,” in Excimer Lasers—1983, C. K. Rhodes, H. Egger, H. Pummer, eds., Vol. 100 of AIP Conference Proceedings Series (American Institute of Physics, New York, 1983), pp. 181–187. [CrossRef]
  68. M. Smith, A. Smits, R. Miles, “Compressible boundary layer density cross sections by UV Rayleigh scattering,” Opt. Lett. 14, 916–918 (1989). [CrossRef] [PubMed]
  69. M. Decker, V. Sick, “Tunable KrCl excimer-laser operation for combustion diagnostics,” Appl. Opt. 35, 482–484 (1996). [CrossRef] [PubMed]
  70. A. Orth, V. Sick, J. Wolfrum, R. R. Maly, M. Zahn, “Simultaneous 2D single-shot imaging of OH concentrations and temperature fields in an SI engine simulator,” in Proceedings of the Twenty-Fifth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1994), pp. 143–150. [CrossRef]
  71. G. Grünefeld, V. Beushausen, P. Andresen, “Planar air density measurements near model surfaces by Rayleigh/Raman scattering,” AIAA J. 32, 1457–1463 (1994). [CrossRef]
  72. D. A. Long, Raman Spectroscopy (McGraw-Hill, New York, 1977).
  73. T. Kobayashi, M. Konishi, M. Ohtaka, S. Taki, M. Ueda, K. Kagawa, H. Inaba, “Application of UV and VUV excimer lasers in combustion measurements using enhanced Raman scattering,” in Laser Diagnostics and Modeling Combustion, K. Iinuma, T. Asanuma, T. Ohsawa, J. Doi, eds. (Springer-Verlag, Berlin, 1987), pp. 133–140. [CrossRef]
  74. A. N. Malov, S. Y. Fedorov, “XeCl and KrF excimer lasers for diagnostics of flames by spontaneous Raman Scattering,” Fiz. Goreniya Vzryva 24, 54–58 (1988) [Combust. Explos. Shock Waves (USSR) 24, 431–434 (1988)].
  75. E. P. Hassel, F. Lipp, J. Janicka, “Measurement of temperature and concentration in turbulent flames by Raman spectroscopy,” in Combustion and Reaction Kinetics, Proceedings of the Twenty-Second Annual Conference at the Fraunhofer Institut für Chemische Technologie (1991), pp. 25.1–25.15.
  76. F. Lipp, J. Hartig, E. P. Hassel, J. Janicka, “Comparison of UV Raman scattering measurements in a turbulent diffusion flame with Reynolds-stress model predictions,” in Proceedings of the Twenty-Fourth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1992), pp. 287–294. [CrossRef]
  77. E. P. Hassel, “Ultraviolet Raman scattering measurements in flames by the use of a narrow band XeCl excimer laser,” Appl. Opt. 32, 4058–4065 (1993). [CrossRef] [PubMed]
  78. J. A. Shirley, L. R. Boedecker, “Non-intrusive Space Shuttle main engine nozzle exit diagnostics,” presented at the AIAA/ASME/SAE/ASEE Twenty-Fourth Joint Propulsion Conference, Boston, 11–13 July 1988, paper AIAA-88-3038.
  79. J. A. Shirley, “UV Raman spectroscopy of H2-air flames excited with a narrowband KrF laser,” Appl.Phys. B 51, 45–48 (1990).
  80. A. C. Eckbreth, T. J. Anderson, J. A. Shirley, “Laser Raman diagnostics for propulsion systems development,” Ber. Bunsenges. Phys. Chem. 97, 1597–1608 (1993). [CrossRef]
  81. R. W. Pitz, T. S. Cheng, J. A. Wehrmeyer, C. F. Hess, “Two-photon predissociative fluorescence of H2O by a KrF laser for concentration and temperature measurements,” Appl. Phys. B 56, 94–100 (1993). [CrossRef]
  82. T. S. Cheng, J. A. Wehrmeyer, R. W. Pitz, O. Jarrett, G. B. Northam, “Raman measurement of mixing and finite-rate chemistry in a supersonic hydrogen/air diffusion flame,” Combust. Flame 99, 157 (1994). Originally presented as “Finite-rate chemistry effects in a Mach 2 reacting flow,” presented at the AIAA/SAE/ASME/ASEE Twenty-Seventh Joint Propulsion Conference, Sacramento, Calif., 24–26 June 1991, paper AIAA-91-2320. [CrossRef]
  83. R. W. Pitz, T. S. Cheng, S. R. March, J. A. Wehrmeyer, “Effects of swirl on finite-rate chemistry in lifted jet diffusion flames,” presented at the AIAA/SAE/ASME/ASEE Twenty-Seventh Joint Propulsion Conference, Sacramento, Calif., 24–26 June 1991, paper AIAA-91-2319.
  84. R. W. Pitz, S. Nandula, T. M. Brown, “Comparison of reaction zones in turbulent lifted diffusion flames to stretched laminar flamelets,” presented at the AIAA/SAE/ASME/ASEE Twenty-Eighth Joint Propulsion Conference, Nashville, Tenn., 6–8 July 1992, paper AIAA-92-3349. Also see, R. W. Pitz, T. M. Brown, T. S. Cheng, S. Nandula, T. A. Wehrmeyer, O. Jarrett, G. B. Northern, J. Y. Chen, “Finite-rate chemistry effects in subsonic and supersonic combustion,” in Combustion in High-Speed Flames, J. Buckmaster et al., eds. (Kluwer, The Netherlands, 1994).
  85. S. P. Nandula, T. M. Brown, R. W. Pitz, P. A. DeBarber, “Single-pulse, simultaneous multipoint multispecies Raman measurements in turbulent nonpremixed jet flames,” Opt. Lett. 19, 414–416 (1994). [PubMed]
  86. S. P. Nandula, T. M. Brown, R. W. Pitz, “Measurements of scalar dissipation in the reaction zones of turbulent non-premixed H2-air flames,” Combust. Flame 99, 775–783 (1994). [CrossRef]
  87. A. Brockhinke, P. Andresen, K. Kohse Höinghaus, “Quantitative one dimensional single pulse multispecies concentration and temperature measurements in the lift-off region of a turbulent H2-air diffusion flame,” Appl. Phys. B 61, 533–545 (1995). [CrossRef]
  88. A. Brockhinke, P. Andresen, K. Kohse Höinghaus, “Contribution to the analysis of temporal and spatial structures near the lift-off region of a turbulent hydrogen diffusion flame,” in Proceedings of the Twenty-Sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 153–159. [CrossRef]
  89. M. M. Tacke, T. C. Cheng, E. P. Hassel, J. Janicka, “Study of swirling recirculating hydrogen diffusion flame using UV-Raman spectroscopy,” in Proceedings of the Twenty-Sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 169–175. [CrossRef]
  90. J. W. Hartick, M. Tacke, G. Früchtel, E. P. Hassel, J. Janicka, “Interaction of turbulence and radiation in confined diffusion flames,” in Proceedings of the Twenty-Sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 75–82. [CrossRef]
  91. G. Grünefeld, V. Beushausen, P. Andresen, W. Hentschel, “Spatially resolved Raman scattering for multi-species and temperature analyses in technically applied combustion systems: spray flame and four-cylinder in-line engine,” Appl. Phys. B 58, 333–342 (1994). [CrossRef]
  92. G. Grünefeld, V. Beushausen, P. Andresen, “Interference-free uv-laser-induced Raman and Rayleigh measurements in hydrocarbon combustion using polarization properties,” Appl. Phys. B 61, 473–478 (1995). [CrossRef]
  93. M. Knapp, A. Luczak, V. Beushausen, W. Hentschel, P. Mantz, P. Andresen, “Polarization separated spatially resolved single laser shot multispecies analysis in the combustion chamber of a realistic SI engine with a tunable KrF excimer laser,” in Proceedings of the Twenty-Sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 2589–2596. [CrossRef]
  94. M. Knapp, L. Hüwel, G. Grünefeld, V. Beushausen, W. Hentschel, P. Andresen, “Spontaneous vibrational Raman and O2 laser-induced predissociative fluorescence measurements with a tunable ArF excimer laser for stoichiometry and temperature analysis in the combustion chamber of an SI engine,” Appl. Opt.
  95. M. Knapp, A. Luczak, V. Beushausen, W. Hentschel, P. Andresen, “Combinative in-cylinder measurements of equivalence ratio, temperature, residual gas content, NO and OH formation, and IMEP in single combustion cycles of a 4-cylinder SI-engine,” in Autotech ’95, (Institution of Mechanical Engineers, London, 1995), paper C498/15/035.
  96. M. Knapp, G. Grünefeld, V. Beushausen, W. Hentschel, P. Andresen, A. Luczak, S. Eisenberg, “Laserspectroskopische Diagnostik im Brennraum eines Ottomotors und an der Flamme eines Ölheizungsbrenners,” VDI Ber. (Ver. Dtsch. Ing.) 1193, 325–332 (1995).
  97. A. Luczak, S. Eisenberg, H. Schlüter, V. Beushausen, P. Andresen, “3-D density and temperature-measurements in an oil-spray flame using UV-Raman-scattering,” in Air Pollution and Visibility Measurements, C. Werner, P. Fabian, V. Klein, M. Tacke, K. Weber, eds., Proc. SPIE2506, 121–131 (1995). [CrossRef]
  98. G. A. Massey, C. J. Lemon, “Feasibility of measuring temperature and density fluctuations in air using laser-induced O2 fluorescence,” IEEE J. Quantum Electron. QE-20, 454–457 (1984). [CrossRef]
  99. P. Andresen, A. Bath, W. Gröger, H. W. Lülf, G. Meijer, J. J. ter Meulen, “Laser-induced fluorescence with tunable excimer lasers as a possible method for instantaneous temperature field measurements at high pressures: checks with an atmospheric flame,” Appl. Opt. 27, 365–378 (1988). [CrossRef] [PubMed]
  100. A. M. Wodtke, L. Hüwel, H. Schlüter, H. Voges, G. Meijer, P. Andresen, “Predissociation of O2 in the B state,” J. Chem. Phys. 89, 1929–1935 (1988). [CrossRef]
  101. A. M. Wodtke, L. Hüwel, H. Schlüter, G. Meijer, P. Andresen, H. Voges, “High-sensitivity detection of NO in a flame using a tunable ArF laser,” Opt. Lett. 13, 910–912 (1988). [CrossRef] [PubMed]
  102. G. Meijer, J. J. ter Meulen, P. Andresen, A. Bath, “A sensitive quantum state selective detection of H2O and D2O by (2 + I) resonance enhanced multiphoton ionization,” J. Chem. Phys. 85, 6914–6922 (1986); V. Engel, G. Meijer, A. Bath, P. Andresen, R. Schinke, “The C → A emission in water: theory and experiment,” J. Chem. Phys. 87, 4310–4314 (1987). [CrossRef]
  103. P. Andresen, G. Meijer, H. Schlüter, H. Voges, A. Koch, W. Hentschel, W. Oppermann, E. W. Rothe, “Fluorescence imaging inside an internal combustion engine using tunable excimer lasers,” Appl. Opt. 29, 2392–2404 (1990). [CrossRef] [PubMed]
  104. V. Sick, M. Decker, J. Heinze, W. Stricker, “Collisional processes in the O2B3∑u- state,” Chem. Phys. Lett. 249, 335–340 (1996). [CrossRef]
  105. M. Knapp, A. Luczak, H. Schlüter, V. Beushausen, W. Hentschel, P. Andresen, “Crank-angle-resolved laser-induced fluorescence imaging of NO in a spark ignition engine at 248 nm and correlations to flame front propagation and pressure release,” Appl. Opt. 35, 4009–4017 (1996). [CrossRef] [PubMed]
  106. H. Becker, P. B. Monkhouse, J. Wolfrum, R. S. Cant, K. N. C. Bray, R. Maly, W. Pfister, G. Stahl, J. Warnatz, “Investigation of extinction of unsteady flames in turbulent combustion by 2-D LIF analysis of OH radicals and flamelet analysis,” in Proceedings of the Twenty-Third Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1990), pp. 817–823.
  107. R. Suntz, H. Becker, P. Monkhouse, J. Wolfrum, “Two-dimensional visualization of the flame front using laser induced fluorescence,” Appl. Phys. B 47, 287–293 (1988). [CrossRef]
  108. A. Arnold, H. Becker, R. Suntz, P. Monkhouse, J. Wolfrum, R. Maly, W. Pfister, “Flame front imaging in an internal combustion engine simulator by laser-induced fluorescence of acetaldehyde,” Opt. Lett. 15, 831–833 (1990). [CrossRef] [PubMed]
  109. A. Serpengüzl, “OH radical detection in an optical engine,” in Laser Applications in Combustion and Combustion Diagnostics, L. C. Liuo, ed., Proc. SPIE1862, 158–161 (1993). [CrossRef]
  110. M. Schäfer, W. Ketterle, J. Wolfrum, “Saturated 2D-LIF of OH and 2D determination of effective collisional lifetimes in atmospheric pressure flames,” Appl. Phys. B 52, 341–346 (1991). [CrossRef]
  111. W. Ketterle, M. Schäfer, A. Arnold, J. Wolfrum, “2D single-shot imaging of OH radicals using tunable excimer lasers,” Appl. Phys. B 54, 109–112 (1992). [CrossRef]
  112. J. M. Seitzman, A. Üngüt, P. H. Paul, R. K. Hanson, “Imaging and characterization of OH structures in a turbulent nonpremixed flame,” in Proceedings of the Twenty-Third Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1990), pp. 637–644.
  113. G. Kychakoff, P. H. Paul, I. van Cruyningen, R. K. Hanson, “Movies and 3-D images of flowfields using planar laser-induced fluorescence,” Appl. Opt. 26, 2498–2500 (1987). [CrossRef] [PubMed]
  114. M. Versluis, K. L. Queeney, J. L. Springfield, T. Dreier, A. Dreizler, “Laser-induced fluorescence detection of OH in a flame near 268 nm,” J. Mol. Spectrosc. 166, 486–488 (1994). [CrossRef]
  115. F. Bormann, T. Nielsen, M. Burrows, P. Andresen, “Single pulse collision-insensitive picosecond-PLIF of OH A2Σ+ (v′ = 2) in atmospheric pressure flames,” Appl. Phys. B 62, 601–607 (1996). [CrossRef]
  116. J. H. Grinstead, G. Laufer, R. H. Krauss, T. M. Quagliarolli, G. B. Northam, “Design and calibration of a planar imaging system for OH and O2 measurements in high-temperature large scale facilities” presented at the Nineteenth AIAA Advanced Measurement and Ground Testing Technology Conference, Los Angeles, 17–20 June 1996, paper AIAA-96-2220.
  117. A. Arnold, A. Braumer, A. Buschmann, M. Decker, F. Dinkelacker, T. Heitzmann, A. Orth, M. Schäfer, V. Sick, J. Wolfrum, “2D diagnostics in industrial devices,” Ber. Bunsenges. Phys. Chem. 97, 1650–1661 (1993). [CrossRef]
  118. E. W. Rothe, H. An, L. M. Hitchcock, Y. Gu, Gene P. Reck, “Rayleigh and predissociative fluorescence imaging of densities from an internal combustion engine using a tunable KrF laser,” in Laser Applications in Combustion and Combustion Diagnostics II, R. J. Locke, ed., Proc. SPIE2122, 79–82 (1994). [CrossRef]
  119. M. Versluis, M. Boogaarts, R. Klein-Douwel, B. Thus, W. deJongh, A. Braam, J. J. ter Meulen, W. L. Meerts, G. Meijer, “Laser-induced fluorescence imaging in a 100 kW natural gas flame,” Appl. Phys. B 55, 164–170 (1992). [CrossRef]
  120. V. Sick, A. Arnold, E. Dießel, T. Dreier, W. Ketterle, B. Lange, J. Wolfrum, K. U. Thiele, F. Behrendt, J. Warnatz, “Two-dimensional laser diagnostics and modeling of counterflow diffusion flames,” in Proceedings of the Twenty-Third Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1990), pp. 495–501.
  121. A. Arnold, H. Becker, R. Hemberger, W. Hentschel, K. Kollner, W. Meienburg, P. Monkhouse, H. Neckel, M. Schafer, K. P. Schindler, V. Sick, R. Suntz, J. Wolfrum, “Laser in situ monitoring of combustion processes,” Appl. Opt. 29, 4860–4872 (1990). [CrossRef] [PubMed]
  122. A. Arnold, F. Dinkelacker, T. Heitzmann, P. Monkhouse, M. Schäfer, V. Sick, J. Wolfrum, W. Hentschel, K.-P. Schindler, “DI diesel engine combustion visualized by combined laser techniques in flames,” in Proceedings of the Twenty-Fourth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, Pa., 1992), pp. 1605–1612. [CrossRef]
  123. G.-S. Kim, E. W. Rothe, L. M. Hitchcock, Y. Gu, G. P. Reck, “Rayleigh and predissociative fluorescence imaging of total and quantum-state specific densities from a combustion bomb using tunable excimer light,” in Laser Applications in Combustion and Combustion Diagnostics, L. C. Liou, ed., Proc. SPIE1862, 154–157 (1993). [CrossRef]
  124. T. M. Quagliaroli, G. Laufer, S. D. Hollo, R. H. Krauss, R. B. Whitehurst, J. C. McDaniel, “KrF laser-induced OH fluorescence imaging in a supersonic combustion tunnel,” J. Propul. Power 10, 377–382 (1994). [CrossRef]
  125. T. M. Quagliaroli, G. Laufer, R. H. Krauss, J. C. McDaniel, “Planar imaging of OH density distributions in a supersonic combustion tunnel,” presented at the Thirty-First Aerospace Sciences Meeting, Reno, Nev., 11–14 January 1993, paper AIAA-93-0045.
  126. P. Andresen, W. Reckers, H. G. Wagner, E. K. Dabora, H. Voges, “The structure of gaseous detonations as revealed by laser induced fluorescence of the OH radical,” Z. Physik. Chem. Neue Folge 175, 129–143 (1992).
  127. G. Laufer, T. M. Quagliaroli, R. H. Krauss, R. B. Whitehurst, J. C. McDaniel, J. H. Grinstead, “Planar OH density and apparent temperature measurements in a supersonic combusting flow,” AIAA J. 34, 463–469 (1996). [CrossRef]
  128. A. Bräumer, V. Sick, J. Wolfrum, V. Drewes, M. Zahn, R. Maly, “Quantitative two-dimensional measurements of nitric oxide and temperature distributions in a transparent square piston engine,” in Diagnostics in Diesel and SI Engines (Society of Automotive Engineers, Warrendale, Pa., 1995), pp. 119–127.
  129. D. C. Robie, J. D. Buck, W. K. Bischel, “Bandwidth and tuning range of an ArF laser measured by a 1 + 1 resonantly enhanced multiphoton ionization of NO,” Appl. Opt. 29, 3961–3965 (1990). [CrossRef] [PubMed]
  130. B. K. McMillin, M. P. Lee, R. K. Hanson, “Planar laser-induced fluorescence of shock-tube flows with vibrational nonequilibrium,” AIAA J. 30, 436–443 (1992). [CrossRef]
  131. Th. M. Brugman, R. Klein-Douwel, G. Huigen, E. van Walwijk, J. J. ter Meulen, “Laser-induced-fluorescence imaging of NO in an n-heptane- and diesel-fuel-driven diesel engine,” Appl. Phys. B 57, 405–410 (1993). [CrossRef]
  132. G. G. M. Stoffels, Th. M. Brugman, C. M. I. Spaanjaars, N. Dam, W. L. Meerts, J. J. ter Meulen, “In-cylinder measurements of NO in a running Diesel engine by means of LIF diagnostics,” presented at the Fourth International Symposium on Special Topics in Chemical Propulsion, Stockholm, 27–31 May 1996.
  133. M. Versluis, G. Meijer, D. W. Chandler, “Degenerate four wave mixing with a tunable excimer laser,” Appl. Opt. 33, 3289–3295 (1994). [CrossRef] [PubMed]
  134. R. K. Hanson, J. M. Seitzman, “Planar fluorescence imaging in gases,” in Instrumentation for Flows with Combustion, A. M. P. K. Taylor, ed. (Academic, London, 1993), Chap. 6.
  135. A. Roller, A. Arnold, M. Decker, V. Sick, J. Wolfrum, W. Hentschel, K.-P. Schindler, “Non-intrusive temperature measurement during the compression phase of a DI diesel engine,” in Diagnostics in Diesel and SI Engines (Society of Automotive Engineers, Warrendale, Pa., 1995), pp. 113–118.
  136. J. H. Grinstead, G. Laufer, J. C. McDaniel, “Measurements of KrF laser induced O2 fluorescence in high-temperature atmospheric air,” presented at the Thirty-First Aerospace Sciences Meeting, Reno, Nev., 11–14 January 1993, paper AIAA-93-0045.
  137. J. H. Grinstead, G. Laufer, J. C. McDaniel, “Rotational temperature measurements in high-temperature air using KrF laser-induced O2 fluorescence,” Appl. Phys. B 57, 393–396 (1993). [CrossRef]
  138. J. H. Grinstead, G. Laufer, J. C. McDaniel, “Single-pulse, two-line temperature measurement techniques using KrF laser-induced O2 fluorescence,” Appl. Opt. 34, 5501–5512 (1995). [CrossRef] [PubMed]
  139. J. H. Grinstead, T. M. Quagliaroli, G. Laufer, J. C. McDaniel, “Single-pulse temperature measurement in turbulent flame using laser-induced O2 fluorescence,” AIAA J. 34, 624–625 (1996). [CrossRef]
  140. M. Versluis, “Combustion diagnostics at atmospheric pressures using a tunable excimer laser,” Ph.D. dissertation (Catholic University of Nijmegen, Nijmegen, The Netherlands, 1992).
  141. H. Neij, M. Alden, “Application of two-photon laser-induced fluorescence for visualization of water vapor in combustion environments,” Appl. Opt. 33, 6514–6523 (1994). [CrossRef] [PubMed]
  142. G. Laufer, A. S. Lee, “Time-resolved visualization of N2 – H2O molecular mixing,” presented at the AIAA Thirty-Fifth Aerospace Sciences Meeting, Reno, Nev., 6–9 January 1997, paper AIAA-97-0153.
  143. U. Czarnetski, K. Miyazaki, T. Kajiwara, K. Muraoka, K. Maeda, H. F. Dobele, “Comparison of various two-photon excitation schemes for laser-induced fluorescence spectroscopy in atomic hydrogen,” J. Opt. Soc. Am. B 11, 2155–2162 (1994). [CrossRef]
  144. E. W. Rothe, G. S. Ondrey, P. Andresen, “High-sensitivity, state-specific detection of H2 by three-photon direct ionization in gases and discharges,” Opt. Commun. 58, 113–117 (1986). [CrossRef]
  145. L. M. Hitchcock, G. P. Reck, E. W. Rothe, C. C. Tung, “Diagnostics in H2 discharges using a tunable 193 nm laser,” in Microwave and Particle Beam Sources and Directed Energy Concepts, H. E. Brandt, ed., Proc. SPIE1061, 621–624 (1989). [CrossRef]
  146. W. Lempert, G. Diskin, V. Kumar, I. Glesk, R. Miles, “Two-dimensional imaging of molecular hydrogen in H2–air diffusion flames using two photon laser induced fluorescence,” Opt. Lett. 16, 660–662 (1991). [CrossRef] [PubMed]
  147. L. M. Hitchcock, G. S. Kim, E. W. Rothe, G. P. Reck, “Stimulated Raman pumping to H2 (v″ = 1, J″ = 1) and resonance-enhanced multiphoton ionization from it using a single laser,” Appl. Phys. B 52, 27–31 (1991). [CrossRef]
  148. M. Ebben, M. Versluis, J. J. ter Meulen, “The laser induced fluorescence spectrum of SiF around 193 nm,” J. Mol. Spectrosc. 149, 329–340 (1991). [CrossRef]
  149. A. Chryssostomou, “Ortsaufgelöste Temperaturmessung mit laserinduzierter Prädissoziationsfluoreszenz in turbulenter Verbrennung,” Ph.D. dissertation (Bielefeld University, Bielefeld, Germany, 1995).
  150. E. W. Rothe, Y. Gu, G. P. Reck, “Laser-induced predissociative fluorescence: dynamics and polarization and the effect of lower-state rotational energy transfer on quantitative diagnostics,” Appl. Opt. 35, 934–947 (1996). [CrossRef] [PubMed]
  151. K. L. Steffens, J. B. Jeffreys, D. R. Crosley, “Collisional energy transfer in predissociative OH laser-induced fluorescence,” Opt. Lett. 18, 1355–1357 (1993). [CrossRef]
  152. J. Brzozowski, P. Erman, M. Lyyra, “Precision estimates of the predissociation rates of the OH A2Σ state (v ≤ 2),” Phys. Scr. 17, 507–511 (1978). [CrossRef]
  153. R. Schwarzwald, P. Monkhouse, J. Wolfrum, “Picosecond fluorescence lifetime measurement of the hydroxyl radical in an atmospheric pressure flame,” Chem. Phys. Lett. 142, 15–18 (1987). [CrossRef]
  154. M. Köllner, P. Monkhouse, J. Wolfrum, “Time resolved LIF of hydroxyl (A2Σ+, v″ = 1 and v″ = 0) in atmospheric-pressure flames using picosecond excitation,” Chem. Phys. Lett. 168, 355–360 (1990). [CrossRef]
  155. P. M. Doherty, D. R. Crosley, “Polarization of laser-induced fluorescence in an atmospheric pressure flame,” Appl. Opt. 23, 713–721 (1984). [CrossRef]
  156. R. S. Barlow, R. W. Dibble, “Effect of Damköhler number on superequilibrium OH concentration in turbulent nonpremixed jet flames,” AIAA paper 89-0061 (American Institute of Aeronautics and Astronautics, New York, 1989).
  157. T. M. Quagliaroli, G. Laufer, R. H. Krauss, J. C. McDaniel, “Laser selection criteria for OH fluorescence measurements in supersonic combustion test facilities,” AIAA J. 31, 520–527 (1993). [CrossRef]
  158. J. M. Seitzman, R. K. Hanson, “Comparison of excitation techniques for quantitative fluorescence imaging of reacting flows,” AIAA J. 31, 513–519 (1993). [CrossRef]
  159. P. C. Cosby, H. Park, R. A. Copeland, G. T. Slanger, “Predissociation linewidths in O2B3Σu (v = 0, 2),” J. Chem. Phys. 98, 5117–5133 (1993), and references cited therein. [CrossRef]
  160. A. S.-C. Cheung, K. Yoshino, J. R. Esmond, S. S.-L. Chiu, D. E. Freeman, W. H. Parkinson, “Predissociation linewidths of the (1,0)–(12,0) Schumann–Runge absorption bands of O2 in the wavelength region 179–202 nm,” J. Chem. Phys. 92, 842–849 (1990). [CrossRef]
  161. G. Laufer, R. L. McKenzie, D. G. Fletcher, “Method for measuring temperatures and densities in hypersonic wind tunnel air flows using laser-induced O2 fluorescence,” Appl. Opt. 29, 4873–4883 (1990). [CrossRef] [PubMed]
  162. D. G. Fletcher, R. L. McKenzie, “Single-pulse measurements of density and temperature in a turbulent, supersonic flow using UV laser spectroscopy,” Opt. Lett. 17, 1614–1616 (1992). [CrossRef] [PubMed]
  163. J. H. Grinstead, G. Laufer, “Requirements for temperature measurements in nonequilibrium flows using laser-induced O2 fluorescence,” in ICIAF ’91 Record, International Conference on Instrumentation for Aerospace Simulation Facilities (IEEE, New York, 1991), p. 262. [CrossRef]
  164. N. P. Tait, D. A. Greenhalgh, “PLIF imaging of fuel fraction in practical devices and LII imaging of soot,” Ber. Bunsenges. Phys. Chem. 97, 1619–1625 (1993). [CrossRef]
  165. D. Wolff, H. Schlüter, V. Beushausen, P. Andresen, “Quantitative determination of fuel air mixture distributions in an internal combustion engine using PLIF of acetone,” Ber. Bunsenges. Phys. Chem. 97, 1738–1741 (1993); D. Wolff, “Quantitative laserdiagnostische Untersuchung der Gemischaufbereitung in technischen Verbrennungssystemen,” Ph.D. dissertation (Bielefeld University, Bielefeld, Germany, 1995).
  166. R. B. Miles, “Quantitative visualization of velocity and density fields in unseeded air flows,” in Experimental and Numerical Flow Visualization (American Society of Mechanical Engineers, New York, 1991), pp. 29–32.
  167. R. B. Miles, D. Zhou, B. Zhang, W. R. Lempert, Z. S. She, “Fundamental turbulence measurements by relief flow tagging,” AIAA J. 31, 447–452 (1993). [CrossRef]
  168. G. S. Diskin, W. R. Lempert, R. B. Miles, “Observation of vibrational relaxation dynamics in X3∑g- oxygen following stimulated Raman excitation to the v = 1 level,” presented at Thirty-Fourth Aerospace Sciences Meeting and Exhibit, Reno, Nev., 15–18 January 1996, paper AIAA-96-0301.
  169. R. Falco, “Laser-induced photochemical anemometry-LIPA,” in Lambda Highlights, 15/16, (Lambda Physik, Göttingen, Germany, May1989), Vol. 15/16, pp. 3–4.
  170. P. Andresen, “Optimierung von turbulenten Verbrennungs und Mischprocessen durch gezielte Zugabe von Substanzen,” German Patent DisclosureDE 4416720 A1 (May1994).
  171. L. R. Boedecker, “Velocity measurements by H2O photolysis and laser-induced fluorescence of OH,” Opt. Lett. 14, 473–475 (1989). [CrossRef]
  172. R. W. Pitz, M. Brown, S. P. Nandula, P. A. Skaggs, P. A. Debarber, M. S. Brown, J. Segall, “Unseeded velocity measurements by ozone tagging velocimetry,” Opt. Lett. 21, 755–757 (1996). [CrossRef] [PubMed]
  173. M. Vershuis, G. Meijer, D. W. Chandler, “Degenerate four wave mixing with a tunable excimer laser to detect combustion gases,” Chem. Phys. Lett. 192, 1–3 (1992). [CrossRef]
  174. H. Becker, A. Arnold, R. Suntz, P. Monkhouse, J. Wolfrum, R. Maly, W. Pfister, “Investigation of flame-structure and burning behavior in an IC engine simulator by 2-D-LIF of OH radicals,” Appl. Phys. B 50, 473–478 (1990). [CrossRef]
  175. G. Grünefeld, A. Brockhincke, V. Beushausen, P. Andresen, “Laser-based multiparameter measurements in a jet engine burner,” AIAA J. 35, 500–508 (1997). [CrossRef]
  176. R. Hönig, G. Kappler, P. Andresen, N. Brehm, “Multispecies detection in a liquid fueled model combustor using tunable excimer lasers,” Combust. Sci. Technol. 102, 1–6 (1994). [CrossRef]
  177. A. Luczak, V. Beushausen, S. Eisenberg, M. Knapp, H. Schlüter, P. Andresen, M. Malobabic, A. Schmidt, “New nonintrusive laser diagnostic tools for design and optimization of technically applied combustion systems,” Combust. Sci. Technol. 116, 1–6; Combust. Sci. Technol. 117, 541 (1996).
  178. D. R. Crosley, R. K. Lengel, “Relative transition probabilities and the electronic transition moment in the A–X System of OH” J. Quant. Spectrosc. Radiat. Transfer 15, 579–591 (1975). [CrossRef]
  179. S. N. Suchard, J. E. Melzer, Spectroscopic Data, Vol. 2 of Homonuclear Diatomic Molecules Series (Plenum, New York, 1976), p. 585.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited