OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 36, Iss. 18 — Jun. 20, 1997
  • pp: 4168–4180

Optical properties of deep ice at the South Pole: absorption

The AMANDA Collaboration, Per Askebjer, Steven W. Barwick, Lars Bergström, Adam Bouchta, Staffan Carius, Eva Dalberg, Kevin Engel, Bengt Erlandsson, Ariel Goobar, Lori Gray, Allan Hallgren, Francis Halzen, Hans Heukenkamp, Per Olof Hulth, Stephan Hundertmark, John Jacobsen, Albrecht Karle, Vijaya Kandhadai, Igor Liubarsky, Doug Lowder, Tim Miller, Pat Mock, Robert M. Morse, Rodin Porrata, P. Buford Price, Austin Richards, Hector Rubinstein, Eric Schneider, Christian Spiering, Ole Streicher, Qin Sun, Thorsten Thon, Serap Tilav, Ralf Wischnewski, Christian Walck, and Gaurang B. Yodh  »View Author Affiliations


Applied Optics, Vol. 36, Issue 18, pp. 4168-4180 (1997)
http://dx.doi.org/10.1364/AO.36.004168


View Full Text Article

Enhanced HTML    Acrobat PDF (364 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We discuss recent measurements of the wavelength-dependent absorption coefficients in deep South Pole ice. The method uses transit-time distributions of pulses from a variable-frequency laser sent between emitters and receivers embedded in the ice. At depths of 800–1000 m scattering is dominated by residual air bubbles, whereas absorption occurs both in ice itself and in insoluble impurities. The absorption coefficient increases approximately exponentially with wavelength in the measured interval 410–610 nm. At the shortest wavelength our value is approximately a factor 20 below previous values obtained for laboratory ice and lake ice; with increasing wavelength the discrepancy with previous measurements decreases. At ∼415 to ∼500 nm the experimental uncertainties are small enough for us to resolve an extrinsic contribution to absorption in ice: submicrometer dust particles contribute by an amount that increases with depth and corresponds well with the expected increase seen near the Last Glacial Maximum in Vostok and Dome C ice cores. The laser pulse method allows remote mapping of gross structure in dust concentration as a function of depth in glacial ice.

© 1997 Optical Society of America

History
Original Manuscript: July 8, 1996
Revised Manuscript: January 14, 1997
Published: June 20, 1997

Citation
Per Askebjer, Steven W. Barwick, Lars Bergström, Adam Bouchta, Staffan Carius, Eva Dalberg, Kevin Engel, Bengt Erlandsson, Ariel Goobar, Lori Gray, Allan Hallgren, Francis Halzen, Hans Heukenkamp, Per Olof Hulth, Stephan Hundertmark, John Jacobsen, Albrecht Karle, Vijaya Kandhadai, Igor Liubarsky, Doug Lowder, Tim Miller, Pat Mock, Robert M. Morse, Rodin Porrata, P. Buford Price, Austin Richards, Hector Rubinstein, Eric Schneider, Christian Spiering, Ole Streicher, Qin Sun, Thorsten Thon, Serap Tilav, Ralf Wischnewski, Christian Walck, and Gaurang B. Yodh, "Optical properties of deep ice at the South Pole: absorption," Appl. Opt. 36, 4168-4180 (1997)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-36-18-4168


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. C. Mock, P. Askebjer, S. W. Barwick, L. Bergstroöm, A. Bouchta, S. Carius, B. Erlandsson, A. Goobar, L. Gray, A. Hallgren, F. Halzen, H. Heukenkamp, P. O. Hulth, J. Jacobsen, S. Johansson, V. Kandhadai, A. Karle, I. Liubarsky, D. M. Lowder, T. C. Miller, R. Morse, R. Porrata, P. B. Price, A. Richards, H. Rubinstein, Ch. Spiering, Q. Sun, Th. Thon, S. Tilav, C. Walck, R. Wischnewski, G. Yodh, “Status and capabilities of AMANDA-94,” in Proceedings of the 24th International Cosmic Ray Conference (Istituto Nazionale di Fisica Nucleare, Rome, 1995), pp. 758–761; L. Gray, P. Askebjer, S. W. Barwick, L. Bergström, A. Bouchta, S. Carius, B. Erlandsson, A. Goobar, A. Hallgren, F. Halzen, H. Heukenkamp, P. O. Hulth, J. Jacobsen, S. Johansson, V. Kandhadai, A. Karle, I. Liubarsky, D. M. Lowder, T. C. Miller, P. C. Mock, R. Morse, R. Porrata, P. B. Price, A. Richards, H. Rubinstein, Ch. Spiering, Q. Sun, T. Thon, S. Tilav, C. Walck, R. Wischnewski, G. Yodh, “The design of a neutrino telescope using natural deep ice as a particle detector,” in Proceedings of the 24th International Cosmic Ray Conference (Istituto Nazionale di Fisica Nucleare, Rome, 1995), pp. 816–819; S. Tilav, “Indirect evidence for long absorption lengths in Antarctic ice,” in Proceedings of the 24th International Cosmic Ray Conference (Istituto Nazionale di Fisica Nucleare, Rome, 1995), pp. 1011–1014.
  2. P. Askebjer, S. W. Barwick, L. Bergström, A. Bouchta, S. Carius, A. Coulthard, K. Engel, B. Erlandsson, A. Goobar, L. Gray, A. Hallgren, F. Halzen, P. O. Hulth, J. Jacobsen, S. Jahansson, V. Kandhadai, I. Liubarsky, D. Lowder, T. Miller, P. C. Mock, R. Morse, R. Porrata, P. B. Price, A. Richards, H. Rubinstein, E. Schneider, Q. Sun, S. Tilav, Ch. Walck, G. Yodh, “Optical properties of the South Pole ice at depths between 0.8 and 1 kilometer,” Science 267, 1147–1150 (1995). [CrossRef] [PubMed]
  3. P. Askebjer, S. W. Barwick, L. Bergström, A. Bouchta, S. Carius, B. Erlandsson, A. Goobar, L. Gray, A. Hallgreen, F. Halzen, H. Heukenkamp, P. O. Hulth, J. Jacobsen, S. Johansson, V. Kandhadai, A. Karle, I. Liubarsky, D. M. Lowder, T. C. Miller, P. C. Mock, R. Morse, R. Porrata, P. B. Price, A. Richards, H. Rubinstein, Ch. Spiering, Q. Sun, Th. Thon, S. Tilav, Ch. Walck, R. Wischnewski, G. Yodh, “Wavelength Dependence of Light Scattering and Absorption in Deep Glacier Ice,” Geophys. Res. Lett. (1997).
  4. T. Uchida, W. Shimada, T. Hondoh, S. Mae, N. I. Barkov, “Refractive-index measurements of natural air-hydrate crystals in an Antarctica ice sheet,” Appl. Opt. 34, 5746–5749 (1995). [CrossRef] [PubMed]
  5. P. B. Price, L. Bergström, “Optical properties of deep ice at the South Pole: scattering,” Appl. Opt. 36, 000–000 (1997). Ao 011889
  6. T. C. Grenfell, D. K. Perovich, “Radiation absorption coefficients of polycrystalline ice from 400–1400 nm,” J. Geophys. Res. 86, 7447–7450 (1981). [CrossRef]
  7. D. K. Perovich, J. W. Govoni, “Absorption coefficients of ice from 250 to 400 nm,” Geophys. Res. Lett. 18, 1233–1235 (1991). [CrossRef]
  8. S. G. Warren, “Optical constants of ice from the ultraviolet to the microwave,” Appl. Opt. 23, 1206–1225 (1984). [CrossRef] [PubMed]
  9. M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurements of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989); A. Ishimaru, “Diffusion of a pulse in densely distributed scatterers,” J. Opt. Soc. Am. 68, 1045–1050 (1978). [CrossRef] [PubMed]
  10. S. Chandrasekhar, “Stochastic problems in physics and astronomy,” Rev. Mod. Phys. 15, 1–88 (1943). [CrossRef]
  11. H. Miller, “Physical properties of ice,” in Vol. 1b of Landolt-Boömrnstein Numerical Data and Functional Relationships in Science and Technology, K.-H. Hellwege, ed. (Springer-Verlag, New York, 1982), pp. 494–507.
  12. W. C. Davidon, “Variance algorithm for minimization,” Comput. J. 10, 406–410 (1968). [CrossRef]
  13. T. I. Quickenden, J. A. Irvin, “The ultraviolet absorption spectrum of liquid water,” J. Chem. Phys. 72, 4416–4428 (1980). [CrossRef]
  14. T. Tomiki, T. Miyata, “Optical studies of alkali fluorides and alkaline earth fluorides in VUV region,” J. Phys. Soc. Jpn. 27, 658–678 (1969); E. D. Palik, W. R. Hunter, “Lithium fluoride,” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, New York, 1995), pp. 675–693.
  15. T. C. McGill, “Theory of multiphoton absorption: a review,” in Optical Properties of Highly Transparent Solids, S. S. Mitra, B. Bendow, eds. (Plenum, New York, 1975), p. 3. [CrossRef]
  16. I. A. Belolaptikov, L. B. Bezrukov, B. A. Korisovets, E. V. Bugaev, G. V. Domogatskii, L. A. Donskich, A. A. Doroshenko, Zh. A. M. Dzhilkibaev, M. D. Galperin, M. N. Gushtan, A. M. Klabukov, S. I. Klimushin, O. Dzh. Lanin, B. K. Lubsandorzhev, N. V. Ogievetskii, A. I. Panfilov, I. A. Sokalski, I. I. Trofimenko, N. M. Budnev, A. G. Chenskii, V. I. Dobrynin, O. A. Gress, A. P. Koshechkin, Dzh. B. Lanin, G. A. Litunenko, A. V. Lopin, V. A. Naumov, M. I. Nemchenko, Yu. A. Parfenov, A. A. Pavlov, O. P. Pokalev, V. A. Primin, A. A. Sumanov, V. A. Tarashanskii, V. L. Zurbanov, A. V. Golikov, E. S. Zaslavskaya, V. B. Kabikov, L. A. Kuzmichov, E. A. Osipova, G. N. Dudkin, V. Yu. Egorov, A. A. Lukanin, A. M. Ovcharov, V. M. Padalko, A. H. Padusenko, S. D. Alatin, S. V. Fialkovskii, V. F. Kulepov, M. B. Milenin, A. A. Levin, A. I. Nikiforov, M. I. Rosanov, H. Heukenkamp, J. Krabi, T. Mikolajski, C. Spiering, R. Wischnewski, L. Jenek, D. Kiss, L. Tanko, Yu. S. Kusner, V. A. Poleshchuk, P. P. Sherstyankin, “The Lake Baikal deep underwater detector,” in Nucl. Phys. B (Proc. supp.) 19B, 388–395 (1991).
  17. J. Babson, B. Barish, R. Becker-Szendy, H. Bradner, R. Cady, J. Clem, S. T. Dye, J. Gaidos, P. Gorham, P. K. F. Grieder, T. Kitamura, W. Kropp, J. G. Learned, S. Matsuno, R. March, K. Mitsuni, D. O’Connor, Y. Oshashi, A. Okada, V. Peterson, L. Price, F. Reines, A. Roberts, C. Roos, H. Sobel, V. J. Stenger, M. Webster, C. Wilson, “Cosmic-ray muons in the deep ocean,” Phys. Rev. D 42, 3613–3620 (1990). [CrossRef]
  18. R. C. Smith, K. S. Baker, “Optical properties of the clearest natural waters,” Appl. Opt. 20, 177–184 (1981). [CrossRef] [PubMed]
  19. S. Noël, H. Mes, “The measurement of the attenuation of light by water in SNO,” SNO preprint STR-91-062, Sudbury Neutrino Observatory, Canada (personal communication, 1991).
  20. I. A. Belolaptikov, L. B. Bezrukov, B. A. Borisovets, N. M. Budnev, A. G. Chenskii, I. A. Danilchenko, Zh. A. M. Dzhilkibaev, V. I. Dobrynin, G. V. Domogatskii, L. A. Donskich, A. A. Doroshenko, S. V. Fialkovskii, A. A. Garus, O. A. Gress, T. A. Gress, H. Heukenkamp, A. Karle, A. M. Klabukov, A. I. limov, S. I. Klimushin, A. P. Koshechkin, J. Krabi, V. F. Kulepov, L. A. Kuzmichov, B. K. Lubsandorzhev, M. B. Milenin, T. Mikolajski, R. R. Mirgazov, N. L. Moseiko, S. A. Nikiforov, E. A. Osipova, A. I. Panfilov, Yu. V. Parfenov, A. A. Pavlov, D. P. Petukhov, K. A. Pocheikin, P. G. Pokhil, P. A. Pokalev, M. I. Rosanov, V. Yu. Rubzov, S. I. Sinegovskii, I. A. Sokalski, C. Spiering, O. Streicher, V. A. Tarashanskii, T. Thon, L. I. Trofimenko, C. Wiebusch, R. Wischnewski, “Variation of water parameters at the site of the Baikal experiment and their effect on the detector performance,” in Proceedings of the 24th International Cosmic Ray Conference, (Istituto Nazionale di Fisica Nucleare, Rome, 1995), pp. 770–772.
  21. P. B. Price, P. Askebjer, S. W. Barwick, L. Bergstroöm, A. Bouchta, S. Carius, B. Erlandsson, A. Goobar, L. Gray, A. Hallgren, F. Halzen, H. Heukenkamp, P. O. Hulth, J. Jacobsen, S. Johansson, V. Kandhadai, A. Karle, I. Liubarsky, D. M. Lowder, T. C. Miller, P. C. Mock, R. Morse, R. Porrata, A. Richards, H. Rubinstein, Ch. Spiering, Q. Sun, S. Tilav, T. Thon, C. Walck, R. Wischnewski, A. J. Westphal, G. Yodh, “Optical properties of South Pole ice for neutrino astrophysics,” in Proceedings of the 24th International Cosmic Ray Conference , (Istituto Nazionale di Fisica Nucleare, Rome, 1995), pp. 777–780.
  22. AMANDA Collaboration, “On the age vs depth and optical clarity of deep ice at South Pole,” J. Glaciol. 41, 445–454 (1995).
  23. A. Royer, M. De Angelis, J. R. Petit, “A 30000 year record of physical and optical properties of microparticles from an east Antarctic ice core and implications for paleoclimate reconstruction models,” Climatic Change 5, 381–412 (1983). Royer et al. inferred from the optical scattering properties of melted ice core samples from Dome C that the particle size distribution and complex refractive index of dust show no depth dependence, although it is not clear to us that these conclusions were strongly supported by their data.
  24. J. D. Lindberg, L. S. Laude, “Measurement of the absorption coefficient of atmospheric dust,” Appl. Opt. 13, 1923–1927 (1974); J. D. Lindberg, “Absorption-coefficient-determination method for particulate materials,” Appl. Opt. 33, 4314–4319 (1994). [CrossRef] [PubMed]
  25. M. Kumai, “Identification of nuclei and concentrations of chemical species in snow crystals sampled at the South Pole,” J. Atmos. Sci. 33, 833–841 (1976); R. Delmas, M. Briat, M. Legrand, “Chemistry of South Pole snow,” J. Geophys. Res. 87, 4314–4318 (1982). [CrossRef]
  26. R. I. Gayley, M. Ram, “Atmospheric dust in polar ice and the background aerosol,” J. Geophys. Res. 90, 12921–12925 (1985). [CrossRef]
  27. E. Mosley-Thompson, Byrd Polar Research Center and Department of Geography, Ohio State University, Columbus, Ohio 43210 (personal communication, 1995).
  28. G. A. d’Almeida, P. Koepke, E. P. Shettle, Atmospheric Aerosols—Global Climatology and Radiative Characteristics (Deepak, Hampton, Va., 1991).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited