OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 36, Iss. 2 — Jan. 10, 1997
  • pp: 430–442

Hierarchical optical ring interconnection (HORN): scalable interconnection network for multiprocessors and multicomputers

Ahmed Louri and Rajdeep Gupta  »View Author Affiliations

Applied Optics, Vol. 36, Issue 2, pp. 430-442 (1997)

View Full Text Article

Enhanced HTML    Acrobat PDF (456 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new interconnection network for massively parallel computing is introduced. This network is called a hierarchal optical ring interconnection (HORN). The HORN consists of a single-hop, scalable, constant-degree, strictly nonblocking, fault-tolerant interconnection topology that uses wavelength-division multiple access to provide better utilization of the terahertz bandwidth offered by optics. The proposed optical network integrates the attractive features of hierarchical ring interconnections, e.g., a simple node interface, a constant node degree, better support for the locality of reference, and fault tolerance, with the advantages of optics. The HORN topology is presented, its architectural properties are analyzed, and an optical design methodology for it is described. Furthermore, a brief feasibility study of the HORN is conducted. The study shows that the topology is highly amenable to optical implementation with commercially available optical elements.

© 1997 Optical Society of America

Original Manuscript: December 22, 1995
Revised Manuscript: May 20, 1996
Published: January 10, 1997

Ahmed Louri and Rajdeep Gupta, "Hierarchical optical ring interconnection (HORN): scalable interconnection network for multiprocessors and multicomputers," Appl. Opt. 36, 430-442 (1997)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. W. Goodman, F. J. Leonberger, S. Y. Kung, R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72, 850–866 (1984). [CrossRef]
  2. S. P. Dandamudi, D. L. Eager, “Hierarchical interconnection networks for Multicomputer Systems,” IEEE Trans. Comput. 39, 786–797 (1990). [CrossRef]
  3. M. Holliday, M. Stumm, “Performance evaluation of hierarchical ring-based shared memory multiprocessors,” IEEE Trans. Comput. 43, 52–67 (1989). [CrossRef]
  4. Z. G. Vranesic, M. Stumm, D. M. Lewis, R. White, “Hector: a hierarchically structured shared-memory multiprocessor,” IEEE Comput. 28, 72–79 (1991). [CrossRef]
  5. B. E. A. Saleh, M. C. Teich, Fundamentals of photonics, (Wiley-Interscience, New York, 1991). [CrossRef]
  6. M. R. Feldman, C. C. Guest, T. J. Drabik, S. C. Esner, “Comparison between electrical and free-space optical interconnects for fine-grain processor arrays based on connection density capabilities,” Appl. Opt. 28, 3820–3829 (1989). [CrossRef] [PubMed]
  7. F. Kiamilev, P. Marchand, A. V. Krishnamoorthy, S. C. Esener, S. H. Lee, “Performance comparison between optoelectronic and VLSI multistage interconnection networks,” J. Lightwave Technol. 9, 1665–1674 (1991). [CrossRef]
  8. A. Louri, H. Sung, “An optical multi-mesh hypercube: a scalable optical interconnection network for massively parallel computing,” J. Lightwave Technol. 12, 704–716 (1994). [CrossRef]
  9. A. D. McAulay, Optical Computer Architectures (Wiley Interscience, New York, 1991).
  10. A. Guha, J. Bristow, C. Sullivan, A. Husain, “Optical interconnections for massively parallel architectures,” Appl. Opt. 29, 1077–1093 (1990). [CrossRef] [PubMed]
  11. M. J. Murdocca, A Digital Design Methodology for Optical Computing (MIT Press, Cambridge, Mass., 1990).
  12. A. E. Willner, C. J. Chang-Hasnain, J. E. Leight “2-D WDM optical interconnections using multiple-wavelength VCSEL’s for simultaneous and reconfigurable communication among many planes,” IEEE Photon. Technol. Lett. 5, 838–841 (1993). [CrossRef]
  13. M. I. Irshid, M. Kavehrad, “A fully transparent fiber-optic ring architecture for WDM networks,” J. Lightwave Technol. 10, 101–108 (1992). [CrossRef]
  14. Y. Li, A. W. Lohmann, S. B. Rao, “Free-space optical mesh-connected bus networks using wavelength-division multiple access,” Appl. Opt. 32, 6425–6437 (1993). [CrossRef] [PubMed]
  15. P. W. Dowd, K. Bogineni, K. A. Aly, J. A. Perreult, “Hierarchical scalable photonic architectures for high-performance processor interconnection,” IEEE Trans. Comput. 42, 1105–1120 (1993). [CrossRef]
  16. L. G. Kazovsky, P. T. Poggiolini, “STARNET: a multi-gigabit-per-second optical LAN utilizing a passive WDM star,” J. Lightwave Technol. 11, 1009–1026 (1993). [CrossRef]
  17. J. Bannister, M. Gerla, M. Kovacevie, “An all-optical multifiber tree network,” J. Lightwave Technol. 11, 997–1008 (1993). [CrossRef]
  18. G. Bell, “Ultracomputers: a teraflop before its time,” Commun. ACM 35, 27–47 (1992). [CrossRef]
  19. D. A. Reed, H. D. Schwetman, “Cost-performance bounds for multicomputer networks,” IEEE Trans. Comput. 32, 83–95 (1983). [CrossRef]
  20. R. J. Berinato, “Acousto-optic tapped delay-line filter,” Appl. Opt. 32, 5797–5809 (1993). [CrossRef] [PubMed]
  21. R. B. Jenkins, B. D. Clymer, “Acousto-optic comparison switch for optical switching networks with analog addressing techniques,” Appl. Opt. 31, 5453–5463 (1992). [CrossRef] [PubMed]
  22. J. P. Powers, An Introduction to Fiber Optic Systems (Aksen, Homewood, Ill., 1993).
  23. G. M. Lundy, “Analyzing a CSMA/CD protocol through a systems of communicating machines specification,” IEEE Trans. Commun. 41, 447–450 (1993). [CrossRef]
  24. G. P. Agrawal, Fiber-Optic Communication Systems (Wiley-Interscience, New York, 1992).
  25. “Electron components: optical semiconductor devices,” in A Data Sheet Pack for Optical Semiconductor Devices,” (NEC, May1995), pp. 1–200.
  26. V. Kumar, A. Grama, A. Gupta, G. Karypis, Introduction to Parallel Computing (Benjamin/Cummings, Redwood City, Calif., 1994).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited