OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 36, Iss. 2 — Jan. 10, 1997
  • pp: 464–469

Simulations of turbulence-induced phase and log-amplitude distortions

D. Kouznetsov, V. V. Voitsekhovich, and R. Ortega-Martinez  »View Author Affiliations

Applied Optics, Vol. 36, Issue 2, pp. 464-469 (1997)

View Full Text Article

Enhanced HTML    Acrobat PDF (338 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new method, to our knowledge, allowing one to simulate correlated random processes is suggested. Structure (or correlation) functions of the processes under simulation are assumed to be given. The method is based on the generation of random wave vectors that allows one to simulate processes for a wide class of structure functions. The validity of the method proposed is illustrated by simulations of the turbulence-induced log-amplitude and phase distortions.

© 1997 Optical Society of America

Original Manuscript: June 3, 1996
Revised Manuscript: September 6, 1996
Published: January 10, 1997

D. Kouznetsov, V. V. Voitsekhovich, and R. Ortega-Martinez, "Simulations of turbulence-induced phase and log-amplitude distortions," Appl. Opt. 36, 464-469 (1997)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. L. McGlamery, “Computer simulation studies of compensation of turbulence degraded images,” in Image Processing Pacific Grove, J. C. Urbach, ed., Proc. SPIE74, 225–233 (1976).
  2. N. Roddier, “Atmospheric wavefront simulation and Zernike polynomials,” in Amplitude and Intensity Spatial Interferometry, J. B. Breckenridge, ed., Proc. SPIE, 1237, 668–679 (1990).
  3. N. Roddier, “Atmospheric wave-front simulation using Zernike polynomials,” Opt. Eng. 29, 1174–1180 (1990). [CrossRef]
  4. N. Takato, M. Iye, I. Yamaguchi, “Wavefront reconstruction error of Shack–Hartmann wavefront sensors,” Pub. Astron. Soc. Pac. 106, 182–188 (1994). [CrossRef]
  5. M. C. Roggermann, B. M. Welsh, D. Montera, T. A. Rhoadarmer, “Method for simulating atmospheric turbulence phase effects for multiple time slices and anisoplanatic conditions,” Appl. Opt. 34, 4037–4051 (1995). [CrossRef]
  6. D. Kouznetsov, R. Ortega-Martinez, “Simulation of random field with given structure function,” Rev. Mex. Fis. 41, 563–571 (1995).
  7. R. C. Cannon, “Optimal bases for wave-front simulation and reconstruction on annular apertures,” J. Opt. Soc. Am. A 13, 862–867 (1995). [CrossRef]
  8. H. Jakobsson, “Simulations of time series of atmospherically distorted wave fronts,” Appl. Opt. 35, 1561–1565 (1995). [CrossRef]
  9. I. M. Gel’fand, G. E. Shilov, Generalized Functions (Academic, New York, 1964), Vol. 1, p. 363.
  10. J. W. Goodman, Statistical Optics (Wiley, New York, 1985), Chap. 2.
  11. V. I. Tatarskii, Wave Propagation in a Turbulent Medium (McGraw-Hill, New York, 1961).
  12. R. E. Hufnagel, “Variation of atmospheric turbulence,“ in Digest of OSA Topical Meeting Optical Propagation through Turbulence, OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1974), pp. WA1-1–WA1-4.
  13. D. L. Fried, “Optical resolution through a randomly inhomogeneous medium for long and very short exposures,” J. Opt. Soc. Am. 56, 1372–1379 (1966). [CrossRef]
  14. M. Abramowitz, I. Stegun, Handbook of Mathematical Functions (Dover, New York, 1965), p. 360.
  15. A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integrals and Series (Gordon & Breach, New York, 1988), Vol. 1, p. 446.
  16. M. I. Charnotskii, J. Gozani, V. I. Tatarskii, V. U. Zavorotny, “Wave propagation in theories in random media based on the path-integral approach,” in Progress in Optics, E. Wolf, ed. (Elsevier, New York, 1993), Vol. 32, pp. 203–266.
  17. R. G. Paxman, B. J. Thelen, J. H. Seldin, “Phase diversity correction of turbulence-induced space blur,” Opt. Lett. 19, 1231–1233 (1994). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited