OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 36, Iss. 20 — Jul. 10, 1997
  • pp: 4635–4643

Blazed diffractive optics

Madeleine B. Fleming and M. C. Hutley  »View Author Affiliations


Applied Optics, Vol. 36, Issue 20, pp. 4635-4643 (1997)
http://dx.doi.org/10.1364/AO.36.004635


View Full Text Article

Enhanced HTML    Acrobat PDF (290 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Diffractive optical elements with blazed profiles can, in theory, have 100% relative efficiency. We review several methods for making such elements and compare their advantages and limitations. Our emphasis is on processes to produce elements other than those with approximate, stepped surfaces, such as binary optical elements. For optical methods, we offer an expression relating the maximum numerical aperture of a diffractive lens with a given maximum efficiency to the numerical aperture of the recording system.

© 1997 Optical Society of America

History
Original Manuscript: December 11, 1996
Revised Manuscript: March 12, 1997
Published: July 10, 1997

Citation
Madeleine B. Fleming and M. C. Hutley, "Blazed diffractive optics," Appl. Opt. 36, 4635-4643 (1997)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-36-20-4635


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, San Francisco, 1968), Chap. 4.
  2. D. A. Pommett, M. G. Moharam, E. B. Grann, “Limits of scalar diffraction theory for diffractive phase elements,” J. Opt. Soc. Am. A 11, 1827–1834 (1994). [CrossRef]
  3. D. C. Dobson, J. A. Cox, “Optimal design of low order diffractive structures,” in Diffractive Optics and Micro-Optics, Vol. 5 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 5–8.
  4. G. J. Swanson, “Binary optics technology: the theory and design of multilevel diffractive optical elements,” (MIT Lincoln Laboratory, Cambridge, Mass., 1989).
  5. E. G. Johnson, “Advantages of genetic algorithm optimization methods in diffractive optic design,” in Diffractive and Miniaturized Optics, S. H. Lee, ed., Vol. CR49 of SPIE Critical Reviews Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993), pp. 54–76.
  6. See, for example, J. A. Cox, T. Werner, J. Lee, S. Nelson, B. Fritz, J. Bergstrom, “Diffraction efficiency of binary optical elements,” in Computer and Optically Formed Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. SPIE1211, 116–124 (1990); M. B. Stern, M. Holz, S. S. Medeiros, R. E. Knowlden, “Fabricating binary optics: process variables critical to optical efficiency,” J. Vac. Sci. Technol. B 9, 3117–3121 (1991); P. D. Hillman, “How manufacturing errors in binary optics arrays affect far field patterns,” in Micro-Optics/Micromechanics and Laser Scanning and Shaping, M. E. Motamedi, L. Beiser, eds., Proc. SPIE2383, 298–308 (1995).
  7. A. Kathman, D. Hochmuth, D. Brown, “Efficiency considerations for diffractive optical elements,” in Applications of Optical Holography, T. Honda, ed., Proc. SPIE2577, 114–122 (1995). [CrossRef]
  8. R. W. Wood, “The echelette grating for the infra-red,” Philos. Mag. 20, 770–778 (1910). [CrossRef]
  9. M. C. Hutley, Diffraction Gratings (Academic, London, 1982), pp. 250–257.
  10. K. Goto, K. Mori, G. Hatakoshi, S. Takahashi, “Spherical grating objective lenses for optical disk pick-ups,” Jpn. J. Appl. Phys. 26, Supp. 26-4, 135–140 (1987).
  11. P. P. Clark, C. Londoño, “Production of kinoforms by single-point diamond turning,” Opt. News 15(12), 39–40 (1989). [CrossRef]
  12. B. E. Bernacki, A. C. Miller, L. C. Maxey, J. P. Cunningham, “Hybrid optics for the visible produced by bulk casting of sol-gel glass using diamond-turned molds,” in Optical Manufacturing and Testing, V. J. Dougherty, H. P. Stahl, eds., Proc. SPIE2536, 463–474 (1995). [CrossRef]
  13. R. L. Ronconec, D. W. Sweeney, “Cancellation of material dispersion in harmonic diffractive lenses,” in Diffractive and Holographic Optics Technology II, I. Cindrich, S. H. Lee, eds., Proc. SPIE2404, 81–87 (1995). [CrossRef]
  14. C. G. Blough, G. M. Morris, “Diffractive/refractive lenses offer high performance at low cost,” Laser Focus World 31, (11), 67–74 (1995).
  15. M. M. Meyers, M. E. Schickler, “A method of manufacturing a diffractive surface profile,” U.S. patent5,589,983 (31December1996).
  16. J. Futhey, M. Fleming, “Superzone diffractive lenses,” in Diffractive Optics: Design, Fabrication, and Applications, Vol. 9 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), pp. 4–6.
  17. A. Cornu, “Sur la diffraction propriétés focales des réseaux,” C. R. Acad. Paris 80, 645–649 (1875).
  18. A. Cotton, “Résaux obtenus par la photographie des ordes stationaires,” Seances Soc. Fran. Phys.70–73 (1901).
  19. N. K. Sheridan, “Production of blazed holograms,” Appl. Phys. Lett. 12, 316–318 (1968). [CrossRef]
  20. M. C. Hutley, “Blazed interference diffraction gratings for the ultraviolet,” Opt. Acta 22, 1–13 (1975). [CrossRef]
  21. G. J. Schmahl, “Holographically made diffraction gratings for the visible, UV, and soft x-ray region,” J. Spectrosc. Soc. Jpn. 23, Supp. 1, 3–11 (1974).
  22. M. Breidne, S. Johansson, L.-E. Nilson, H. Ahlen, “Blazed holographic gratings,” Opt. Acta 26, 1427–1441 (1979). [CrossRef]
  23. N. Aebischer, “Calculs de profils dissymétriques observables des figures d’interférences ordes multiples spheriques,” Nouv. Rev. d’Opt. Appl. 2, 351–366 (1971). [CrossRef]
  24. R. Ferrière, P. Andres, C. Illueca, “Réalisation de lentilles de phase à Fresnel par interférométrie à ordes multiples,” J. Opt. (Paris) 15, 213–218 (1984).
  25. J. J. Claire, M. Françon, J.-P. Laude, “Lentilles (kinoform) obtenus par interférométrie,” C.R. Acad. Sci. Paris 270, 1600–1603 (1970).
  26. M. C. Hutley, R. F. Stevens, S. J. Wilson, “The manufacture of blazed zone plates using a Fabry-Perot interferometer,” J. Mod. Opt. 35, 265–280 (1988). [CrossRef]
  27. L. B. Lesem, P. M. Hirsch, J. A. Jordan, “The kinoform: a new wavefront reconstruction device,” IBM J. Res. Develop. 13, 150–155 (1969). [CrossRef]
  28. J. A. Jordan, P. M. Hirsch, L. B. Lesem, D. L. Van Rooy, “Kinoform lenses,” Appl. Opt. 9, 1883–1887 (1970). [PubMed]
  29. V. P. Koronkovich, “Fabrication of kinoform optical elements,” Optik 67, 257–266 (1984).
  30. M. T. Gale, M. Rossi, J. Pedersen, H. Schütz, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresist,” Opt. Eng. 33, 3556–3566 (1994). [CrossRef]
  31. J. Schwider, J. Grzanna, R. Spolaczyk, R. Burov, “Testing aspherics in reflected light using blazed synthetic holograms,” Opt. Acta 27, 683–698 (1980). [CrossRef]
  32. N. Emerton, R. W. Smith, R. G. Cañas, “Blazed surface relief diffractive optical elements,” in Holographic Systems Components and Applications, IERE Conf. Proc. Cambridge76, 99–103 (1987).
  33. E.-B. Kley, B. Schnabel, “E-beam lithography: a suitable technology for fabrication of high-accuracy 2D and 3D surface profiles,” in Microlithography and Metrology in Micromachining, M. T. Postek, ed., Proc. SPIE2640, 71–80 (1995). [CrossRef]
  34. M. Ekberg, F. Nikolajeff, M. Larsson, S. Hård, “Proximity-compensated blazed transmission grating manufacture with direct-writing, electron-beam lithography,” Appl. Opt. 33, 103–107 (1994). [CrossRef] [PubMed]
  35. V. Moreno, M. C. Hutley, J. R. Tyrer, “The manufacture of blazed oblique zone plates for use at 10.6 µm,” in Holographic Systems Components and Applications, IEE Conf. Proc. Bath311, 76–79 (1989).
  36. D. Purdy, “Fabrication of complex micro-optic components using photosculpting through halftone transmission masks,” Pure Appl. Opt. 3, 167–175 (1994). [CrossRef]
  37. D. C. O’Shea, W. S. Rockward, “Gray-scale masks for diffractive-optics fabrication: II. Spatially filtered halftone screens,” Appl. Opt. 34, 7518–7526 (1995). [CrossRef] [PubMed]
  38. T. J. Suleski, D. C. O’Shea, “Gray-scale masks for diffractive-optics fabrication: I. Commercial slide imagers,” Appl. Opt. 34, 7507–7517 (1995). [CrossRef] [PubMed]
  39. G. Gal, “Micro-optics technology development for advanced sensors,” in Diffractive and Miniaturized Optics, S. H. Lee, ed., Vol. CR49 of SPIE Critical Reviews Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1994), pp. 329–359; “Exposure mask for fabricating microlenses,” U.S. Patent5,482,800 (9January1996).
  40. W. Däschner, P. Long, M. Larsson, S. H. Lee, “Fabrication of diffractive optical elements using a single optical exposure with a gray level mask,” J. Vac. Sci. Technol. B 13, 2729–2731 (1995). [CrossRef]
  41. M. T. Duignan, G. P. Behrmann, “Excimer laser micromachining for rapid fabrication of binary and blazed diffractive optical elements,” in Diffractive Optics and Micro-Optics, Vol. 5 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 314–317.
  42. G. P. Behrmann, M. T. Duignan, “Excimer laser micromachining for rapid fabrication of diffractive optical elements,” Appl. Opt. 36, 4666–4674 (1997). [CrossRef] [PubMed]
  43. X. Wang, J. R. Leger, R. H. Rediker, “Rapid fabrication of diffractive micro-lenses using excimer laser ablation,” in Diffractive Optics and Micro-Optics, Vol. 5 of 1996 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 310–313.
  44. A. P. Wood, “Hybrid refractive-diffractive lens for manufacture by diamond turning,” in Commercial Application of Precision Manufacturing at the Submicron Level, L. R. Baker, ed., Proc. SPIE1573, 122–128 (1991). [CrossRef]
  45. J. A. Futhey, “Diffractive bifocal intraocular lens,” in Holographic Optics: Optically and Computer Generated, I. N. Cindrich, S. H. Lee, ed., Proc. SPIE1052, 142–149 (1989). [CrossRef]
  46. M. J. Simpson, J. A. Futhey, “Multi-focal diffractive ophthalmic lenses,” U.S. Patent5,076,684 (31December1991).
  47. J. A. Futhey, W. B. Isaacson, R. L. Neby, “Multifocal diffractive lens,” U.S. Patent4,830,481 (16May1989).
  48. K. C. Johnson, “Dispersion-compensated Fresnel lens,” U.S. Patent5,161,057 (3November1992).
  49. J. C. Marron, D. K. Angell, A. M. Tai, “Higher-order kinoforms,” in Computer and Optically Formed Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. SPIE1211, 62–66 (1990). [CrossRef]
  50. D. W. Sweeney, G. Sommargren, “Single element achromatic diffractive lens,” in Diffractive Optics, Vol. 11 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), pp. 26–29.
  51. J. A. Futhey, “Diffractive lens,” U.S. Patent4,936,666 (26June1990); “Superzone holographic mirror,” U.S. Patent5,285,314 (8February1994).
  52. M. Rossi, G. L. Bona, R. E. Kunz, “Phase-matched Fresnel elements,” Opt. Commun. 97, 6–10 (1993). [CrossRef]
  53. M. C. Hutley, R. F. Stevens, S. J. Wilson, “The manufacture of blazed zone plates for use in the 10 µm spectral region,” Opt. Eng. 30, 1005–1010 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited