OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 36, Iss. 20 — Jul. 10, 1997
  • pp: 4675–4680

Cost-effective mass fabrication of multilevel diffractive optical elements by use of a single optical exposure with a gray-scale mask on high-energy beam-sensitive glass

Walter Däschner, Pin Long, Robert Stein, Chuck Wu, and S. H. Lee  »View Author Affiliations


Applied Optics, Vol. 36, Issue 20, pp. 4675-4680 (1997)
http://dx.doi.org/10.1364/AO.36.004675


View Full Text Article

Enhanced HTML    Acrobat PDF (718 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a method for reproducing diffractive optical elements in quantity. The method is compatible with VLSI microfabrication techniques and involves generating a gray-scale mask. The gray-scale mask is employed in an optical aligner to expose an analog photoresist on any environmentally durable substrate, e.g., glass, quartz, semiconductor, or metal, one exposure for each diffractive optical element. After copies of the mask on the photoresist are developed, many substrates can be processed in parallel in a chemically assisted ion-beam etcher to transfer the microstructures on the analog resists simultaneously onto the surfaces of the substrates.

© 1997 Optical Society of America

History
Original Manuscript: August 27, 1996
Revised Manuscript: November 25, 1996
Published: July 10, 1997

Citation
Walter Däschner, Pin Long, Robert Stein, Chuck Wu, and S. H. Lee, "Cost-effective mass fabrication of multilevel diffractive optical elements by use of a single optical exposure with a gray-scale mask on high-energy beam-sensitive glass," Appl. Opt. 36, 4675-4680 (1997)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-36-20-4675


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. W. Chen, J. S. Anderson, “Imaging by diffraction: grating design and hardware results,” in Diffractive and Miniaturized Optics, S. H. Lee, ed., Vol. CR49 of SPIE Critical Reviews Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993), pp. 77–97.
  2. T. A. Fritz, A. Cox, “Diffractive optics for broadband infrared imagers: design examples,” in Holographic Optics: Optically and Computer Generated, I. Cindrich, S. H. Lee, eds., Proc. SPIE1052, 25–31 (1989). [CrossRef]
  3. S. H. Lee, “Recent advances in computer generated holograms,” Opt. Photon. News 1(7) 18–22 (1990). [CrossRef]
  4. Y. Opplinger, P. Sixt, J. M. Stauffer, J. Mayor, P. Regnault, G. Voinin, “One-step 3D shaping using a gray-tone mask for optical and microelectronic applications,” Microelectron. Eng. 23, 449–454 (1994). [CrossRef]
  5. H. Andersson, M. Ekberg, S. Hård, S. Jacobsson, M. Larsson, T. Nilsson, “Single photomask multilevel kinoforms in quartz and photoresist: manufacture and evaluation,” Appl. Opt. 29, 4259–4267 (1990). [CrossRef] [PubMed]
  6. W. Dächner, P. Long, M. Larsson, S. H. Lee. “Fabrication of diffractive optical elements using a single optical exposure with a gray level mask,” J. Vac. Sci. Technol. B 13, 2729–2731 (1995). [CrossRef]
  7. “HEBS-glass photomask blanks,” Product Information 94-88, Canyon Materials, Inc., 6665 Nancy Ridge Dr., San Diego, Calif., 92121.
  8. C. Wu “Method of making high energy beam sensitive glasses,” U.S. Patent5,078,771 (7January1992).
  9. “CM200 laser beam direct write all glass photomask blanks,” Product Information, Canyon Materials, Inc., 6665 Nancy Ridge Dr., San Diego, Calif., 92121.
  10. W. Däschner, M. Larsson, S. H. Lee, “Fabrication of monolithic diffractive optical elements by the use of e-beam direct write on an analog resist and a single chemically assisted ion-beam-etching step,” Appl. Opt. 34, 2534–2539 (1995). [CrossRef] [PubMed]
  11. G. J. Swanson, “Binary optics technology: the theory and design of multi-level phase diffractive optical elements,” (MIT, Cambridge, Mass., 1989).
  12. J. Jahns, S. J. Walker, “Two-dimensional array of diffractive microlenses fabricated by thin film deposition,” Appl. Opt. 29, 931–936 (1990). [CrossRef] [PubMed]
  13. L. D’Auria, J. P. Huignard, A. M. Roy, E. Spitz, “Photolithographic fabrication of thin film lenses,” Opt. Commun. 5, 232–235 (1972). [CrossRef]
  14. M. B. Stern, S. S. Medeiros, “Deep three-dimensional microstructure fabrication for infrared binary optics,” J. Vac. Sci. Technol. B 10, 2520–2525 (1992). [CrossRef]
  15. M. B. Stern, M. Holz, S. S. Medeiros, R. E. Knowlden, “Fabricating binary optics: process variables critical to optical efficiency,” J. Vac. Sci. Technol. B 9, 3117–3121 (1991). [CrossRef]
  16. D. W. Ricks, “Scattering from diffractive optics,” in Diffractive and Miniaturized Optics, S. H. Lee, ed., Vol. CR49 of SPIE Critical Review Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993), pp. 187–211.
  17. G. Blough, M. Morris, “Hybrid lenses offer high performance at low cost,” Laser Focus World 31(11) 67–74 (1995).
  18. M. Feldman “Practical diffractive optics for laser diodes for commercial applications,” presentation MGG1, presented at OSA ’95 Annual Meeting, Portland, Ore., 10–15 September 1995.
  19. K. Urquhart, S. H. Lee, C. C. Guest, M. R. Feldman, H. Farhoosh, “Computer aided design of computer generated holograms for electron beam fabrication,” Appl. Opt. 28, 3387–3396 (1989). [CrossRef] [PubMed]
  20. J. Fan, D. Zaleta, K. Urquhart, S. H. Lee, “Efficient encoding algorithms for computer-aided design of diffractive optical elements by the use of electron-beam fabrication,” Appl. Opt. 34, 2522–2533 (1995). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited