OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 36, Iss. 21 — Jul. 20, 1997
  • pp: 4922–4931

Analysis of aircraft exhausts with Fourier-transform infrared emission spectroscopy

Jörg Heland and Klaus Schäfer  »View Author Affiliations


Applied Optics, Vol. 36, Issue 21, pp. 4922-4931 (1997)
http://dx.doi.org/10.1364/AO.36.004922


View Full Text Article

Enhanced HTML    Acrobat PDF (311 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Because of the worldwide growth in air traffic and its increasing effects on the atmospheric environment, it is necessary to quantify the direct aircraft emissions at all altitudes. In this study Fourier-transform infrared emission spectroscopy as a remote-sensing multi-component-analyzing technique for aircraft exhausts was investigated at ground level with a double pendulum interferometer and a line-by-line computer algorithm that was applied to a multilayer radiative transfer problem. Initial measurements were made to specify the spectral windows for traceable compounds, to test the sensitivity of the system, and to develop calibration and continuum handling procedures. To obtain information about the radial temperature and concentration profiles, we developed an algorithm for the analysis of an axial-symmetric multilayered plume by use of the CO2 hot band at approximately 2400 cm-1. Measurements were made with several in-service engines. Effects that were due to engine aging were detected but have to be analyzed systematically in the near future. Validation measurements were carried out with a conventional propane gas burner to compare the results with those obtained with standard measurement equipment. These measurements showed good agreement to within ±20% for the CO and NO x results. The overall accuracy of the system was found to be ±30%. The detection limits of the system for a typical engine plume (380 °C, Φ = 50 cm) are below 0.1% for CO2, ∼0.7% for H2O, ∼20 ppmv (parts per million by volume) for CO, and ∼90 ppmv for NO.

© 1997 Optical Society of America

History
Original Manuscript: July 23, 1996
Revised Manuscript: February 18, 1997
Published: July 20, 1997

Citation
Jörg Heland and Klaus Schäfer, "Analysis of aircraft exhausts with Fourier-transform infrared emission spectroscopy," Appl. Opt. 36, 4922-4931 (1997)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-36-21-4922


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. U. Schumann, “On the effect of emissions from aircraft engines on the state of the atmosphere,” Ann. Geophys. 12, 365–384 (1994). [CrossRef]
  2. K. N. Liou, S. C. Ou, G. Koenig, “An investigation of the climatic effect of contrail cirrus,” in Air Traffic and the Environment: Background, Tendencies, and Potential Global Atmospheric Effects, Proceedings of a DLR International Scientific Colloquium, U. Schumann, ed. (Springer–Verlag, Berlin, Germany, 1990), pp. 154–169.
  3. C. Johnson, J. Henshaw, G. McInnes, “The impact of aircraft NOx emissions on tropospheric ozone and global warming,” Nature, (London) 355, 69–71 (1992).
  4. R. A. Egli, “Climatic effects of air traffic,” Environ. Conserv. 22, 196–198 (1995). [CrossRef]
  5. A. J. Schmitt, “Global inventories of aircraft emissions,” in Impact of Aircraft and Spacecraft Upon the Atmosphere, Proceedings of a DLR International Scientific Colloquium, U. Schumann, D. Wurzel, eds. (DLR, Köln–Porz, Germany, 1994), pp. 65–70.
  6. S. L. Baughcum, S. C. Henderson, P. S. Hertel, D. R. Maggiora, C. A. Oncina, “Stratospheric emissions effects database development,” (NASA, Hampton, Va., 1994).
  7. Z. H. Landau, M. Metwally, R. Van Alstyne, C. A. Ward, “Jet aircraft engine exhaust emissions database development: Year 1990 and 2015 scenarios,” (NASA, Hampton, Va., 1994).
  8. M. Lecht, P. Schimming, G. Winterfeld, “Ermittlung der Emissionen ziviler Triebwerkstypen im Teillastbereich,” (DLR, Köln–Porz, Germany, 1986).
  9. F. Deidewig, “Schadstoffemissionen ziviler Flugtriebwerke am Beispiel des CFM56-3 und CF6-8C2,” (DLR, Köln–Porz, Germany, 1992).
  10. U. Schumann, ed., “AERONOX, the impact of NOx emissions from aircraft upon the atmosphere at flight altitudes 8–15 km,” , (EC–DLR, Brussels, Belgium, 1995).
  11. P. Schulte, H. Schlager, “Inferred NOx emission indices of jet engines at cruise altitude from in situ NO and CO2 measurements within aircraft plumes,” in Impact of Aircraft and Spacecraft Upon the Atmosphere, Proceedings of a DLR International Scientific Colloquium, U. Schumann, D. Wurzel, eds. (DLR, Köln–Porz, Germany, 1994), pp. 113–118.
  12. D. W. Fahey, E. R. Keim, K. A. Boering, C. A. Brock, J. C. Wilson, H. H. Jonsson, S. Anthony, T. F. Hanisco, P. O. Wennberg, R. C. Miake-Lye, R. J. Salawitch, N. Louisnard, E. L. Woodbridge, R. S. Gao, S. G. Donnelly, R. C. Wamsley, L. A. Del Negro, S. Solomon, S. C. Wofsy, C. R. Webster, R. D. May, K. K. Kelly, M. Loewenstein, J. R. Podolske, K. R. Chan, “Emission measurements of the Concorde supersonic aircraft in the lower stratosphere,” Science 270, 70–74 (1995). [CrossRef]
  13. R. S. Storlarski, S. L. Baughcum, W. H. Brune, A. R. Douglas, D. W. Fahey, R. R. Friedl, S. C. Liu, R. A. Plumb, L. R. Poole, H. L. Wesoky, D. R. Worsnop, “1995 Scientific assessment of the atmospheric effects of stratospheric aircraft,” , (NASA, Washington, D.C., 1995).
  14. K. Schäfer, R. Haus, J. Heland, “Measurements of compounds in the open atmosphere by Fourier-transform-infrared-spectroscopy: methods and results of FTIS–maps,” in Proceedings of the TNO/EURASAP Workshop on the Reliability of VOC Emission Data Bases (TNO Institute of Environmental Sciences, Delft, The Netherlands, 1993), pp. 109–113.
  15. K. Schäfer, R. Haus, J. Heland, “Inspection of non-CO2 greenhouse gases from emission sources and in ambient air by Fourier-transform-spectrometry: measurements with FTIS–MAPS,” in Non-CO2Greenhouse Gases, Proceedings of the International Symposium, J. van Ham, L. J. H. M. Jansen, R. J. Swart, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1994), pp. 191–196.
  16. K. Schäfer, R. Haus, J. Heland, “Measurements of gaseous compounds from emission sources and in ambient air by Fourier transform infrared spectroscopy: method and results of FTIS–maps,” in Optical Sensing for Environmental Monitoring, Proceedings of an International Speciality Conference, (Air and Waste Management Association, Pittsburgh, Pa., 1994), pp. 455–465.
  17. R. G. Jaacks, H. Rippel, “Double pendulum Michelson interferometer with extended spectral resolution,” Appl. Opt. 28, 29–30 (1989). [CrossRef]
  18. Kayser–Threde GmbH, K300 Handbuch, (Kayser–Threde GmbH, München, Germany, 1994).
  19. R. Haus, K. Schäfer, W. Bautzer, J. Heland, H. Mosebach, H. Bittner, T. Eisenmann, “Mobile Fourier-transform infrared spectroscopy monitoring of air pollution,” Appl. Opt. 33, 5682–5689 (1994). [CrossRef] [PubMed]
  20. R. Haus, K. Schäfer, J. I. Hughes, J. Heland, W. Bautzer, “FTIS remote sensing of smoke stack and test flare emissions,” in Air Pollution and Visibility Measurements, P. Fabian, V. Klein, M. Tacke, K. Weber, C. Werner, eds., Proc. SPIE2506, 45–54 (1995). [CrossRef]
  21. K. Schäfer, J. Heland, R. Sussmann, R. Haus, H. Mosebach, T. Eisenmann, A. Gronauer, G. Depta, C. Werner, “FTIR-Spektroskopie zur Bestimmung der Emissionsquellen von atmosphärischen Spurengasen: Beispiele von Messungen an Schornsteinen und Flugzeugturbinen, bei der Gülleausbringung., an Ställen und Kompostanlagen,” VDI Ber. (Ver. Dtsch. Ing.) 1257257–289 (1996).
  22. C. Werner, R. Haus, F. Köpp, K. Schäfer, “Remote sensing of mass fluxes of trace gases in the boundary layer,” Appl. Phys. B 61, 249–251 (1995). [CrossRef]
  23. Kayser–Threde GmbH, White Cell Produktbeschreibung, (Kayser–Threde GmbH, München, Germany, 1993).
  24. R. M. Goody, Y. L. Yung, Atmospheric Radiation (Oxford U. Press, New York, 1989).
  25. R. Haus, H. Goering, Atmosphärenphysikalische Grundlagen der Infrarotspektroskopischen Luftanalyse (Heinrich–Hertz Institute, Academy of Sciences, Berlin, Germany, 1991).
  26. J. Heland, FTIR-Emissionsspektroskopie an Flugzeugabgasen (Wissenschafts–Verlag, Dr. W. Maraun, Frankfurt/Main, Germany, 1996).
  27. L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, C. Benner, D. V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The hitran molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–508 (1992). [CrossRef]
  28. L. S. Rothman, R. B. Wattson, R. R. Gamache, J. Schroeder, A. McCann, “hitran hawks and hitemp high-temperature molecular database,” in Atmospheric Propagation and Remote Sensing IV, J. C. Dainty, ed., Proc SPIE2471, 105–111 (1995).
  29. L. S. Rothman, R. B. Wattson, R. R. Gamache, D. Goorvitch, R. L. Hawkins, J. E. A. Selby, C. Camy-Peyret, J. Schroeder, A. McCann, “hitemp, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer (1997), to be published.
  30. V. S. Matveev, “Priblizhennye predstavlenija koefficienta pogloshchenija i ekvivalentnych shirin linij c Fojgtovskim konturom (Approximative descriptions of the absorption coefficient and the spectral linewidth with the Voigt profile),” Zh. Prikl. Spektrosk. 16, 228–233 (1972).
  31. W. Döhler, “Vergleiche theoretisch berechneter und experimenteller Transmissionsfunktionen von Kohlendioxid im Bereich der 15-µm-Bande bei homogenen Bedingungen,” Abh. Meteorol. Dienstes Dtsch. Demok. Repub. 120, 6–7 (1978).
  32. A. Klim, “A comparison of methods for the calculation of Voigt-profiles,” J. Quant. Spectrosc. Radiat. Transfer 26, 527–545 (1981). [CrossRef]
  33. G. Herzberg, Molekülspektren und Molekülstruktur, I. Zweiatomige Moleküle (Verlag von Theodor Steinkopff, Dresden, Germany, 1939).
  34. G. Herzberg, Molecular Spectra and Molecular Structure, II. Infrared and Raman Spectra of Polyatomic Molecules (Van Nostrand, Princeton, N.J., 1956).
  35. L. S. Rothman, R. R. Gamache, A. Goldman, L. R. Brown, R. A. Toth, H. M. Pickett, R. L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C. P. Rinsland, M. A. H. Smith, “The hitran database: 1986 edition,” Appl. Opt. 26, 4058–4097 (1987). [CrossRef] [PubMed]
  36. R. H. Norton, C. P. Rinsland, “ATMOS data processing and science analysis methods,” Appl. Opt. 30, 389–400 (1991). [CrossRef] [PubMed]
  37. R. R. Gamache, R. L. Hawkins, L. S. Rothman, “Total internal partition sums in the temperature range 70–3000 K: atmospheric linear molecules,” J. Mol. Spectrosc. 142, 205–219 (1990). [CrossRef]
  38. B. J. Vastag, S. R. Horman, “Calibration of a Michelson interferometer spectrometer,” in 1981 International Conference on Fourier Transform Infrared Spectroscopy, S. C. Columbia, H. Sakai, eds., Proc SPIE289, 745–79 (1981).
  39. E. Lindermeir, P. Haschberger, V. Tank, H. Dietl, “Calibration of a Fourier transform spectrometer using three blackbody sources,” Appl. Opt. 31, 4527–4533 (1992). [CrossRef] [PubMed]
  40. J. H. Seinfeld, Atmospheric Chemistry and Physics of Air Pollution (Wiley, New York, 1986).
  41. H. B. Faulkner, “An emission database for U.S. navy and air force aircraft engines,” presented at the ASME Gas Turbine and Aeroengine Congress and Exposition, Amsterdam, June 1988.
  42. International Civil Aviation Organization, “Engine exhaust emissions databank,” ICAO Doc. 9646, 1st ed., (ICAO Document Sales Unit, 1000 Sherbrooke Street West, Suite 400, Montreal, Quebec H3A 2R2, Canada, 1995).
  43. S. M. Dash, H. S. Pergament, “Acomputational model for the prediction of jet entrainment in the vicinity of nozzle boat-tails (the BOAT code),” (Aeronautical Research Associates of Princeton, Inc., Princeton, N.J., 1978).
  44. J.-M. Hartmann, M. Y. Perrin, Q. Ma, R. H. Tipping, “The infrared continuum of pure water vapor: calculations and high-temperature measurements,” J. Quant. Spectrosc. Radiat. Transfer 49, 675–691 (1993). [CrossRef]
  45. R. R. Gamache, J.-M. Hartmann, L. Rosenmann, “Collisional broadening of water vapor lines. I. A survey of experimental results,” J. Quant. Spectrosc. Radiat. Transfer 52, 481–499 (1994). [CrossRef]
  46. R. C. Miake-Lye, R. C. Brown, M. R. Anderson, C. E. Kolb, “Calculations of condensation and chemistry in an aircraft contrail,” in Impact of Aircraft and Spacecraft Upon the Atmosphere, Proceedings of a DLR International Scientific Colloquium, U. Schumann, D. Wurzel, eds. (DLR, Köln-Porz, Germany, 1994) pp. 274–279.
  47. J. O. Chase, R. W. Hurn, “Measuring gaseous emissions from an aircraft turbine engine,” in Vehicle Emissions—Part 3 (Society of Automotive Engineers, Warrendale, N.Y., 1971), pp. 184–190.
  48. C. W. Spicer, M. W. Holdren, D. L. Smith, D. P. Hughes, M. D. Smith, “Chemical composition of exhaust from aircraft turbine engines,” presented at the Gas Turbine and Aeroengine Congress and Exposition, Brussels, Belgium, 11–14 June 1990.
  49. J. D. Few, H. S. Lowry, “Reevaluation of nitric oxide concentration in exhaust of jet engines and combustors,” (Arnold Engineering Development Center, Arnold Air Force Station, Tenn., 1981).
  50. P. Wiesen, J. Kleffmann, R. Kurtenbach, K. H. Becker, “Nitrous oxide and methane emissions from aero engines,” Geophys. Res. Lett. 21, 2027–2030 (1994). [CrossRef]
  51. C. W. Spicer, M. W. Holdren, R. M. Riggin, T. F. Lyon, “Chemical composition and photochemical reactivity of exhaust from aircraft turbine engines,” Ann. Geophys. 12, 944–955 (1994). [CrossRef]
  52. E. Lindermeir, “Evaluation of infrared emission spectra of aircraft exhaust with the FitFas software,” Ann. Geophys. 12, 417–421 (1994). [CrossRef]
  53. R. Busen, U. Schumann, “Visible contrail formation from fuels with different sulfur content,” Geophys. Res. Lett. 22, 1357–1360 (1995). [CrossRef]
  54. U. Schumann, J. Ström, R. Busen, R. Baumann, K. Gierens, M. Krautstrunk, F. P. Schröder, J. Stingl, “In situ observations of particles in jet aircraft exhausts and contrails for different sulfur containing fuels,” J. Geophys. Res. 101, 6853–6869 (1996).
  55. F. Arnold, J. Schneider, M. Klemm, J. Scheid, T. Stilp, H. Schlager, P. Schulte, M. E. Reinhardt, “Mass spectrometric measurements of SO2 and reactive nitrogen gases in the exhaust plumes of commercial jet airliners at cruise altitudes,” in Impact of Aircraft and Spacecraft Upon the Atmosphere, Proceedings of a DLR International Scientific Colloquium, U. Schumann, D. Wurzel, eds. (DLR, Köln–Porz, Germany, 1994), pp. 323–328.
  56. P. L. Hanst, S. T. Hanst, Infrared Spectra for Quantitative Analysis of Gases, Vols. 1 and 2 (Infrared Analysis Inc., Potomac, Md., 1993).
  57. R. Kurtenbach, P. Wiesen, University of Wuppertal, 42097 Wuppertal, Germany (personal communication).
  58. L. A. Gross, P. R. Griffith, “Spectroscopic temperature estimates by infrared emission spectrometry,” J. Quant. Spectrosc. Radiat. Transfer 39, 463–472 (1988). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited