OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 36, Iss. 21 — Jul. 20, 1997
  • pp: 5072–5077

High-peak-power, pulsed CO2 laser light delivery by hollow glass waveguides

Jiwang Dai and James A. Harrington  »View Author Affiliations


Applied Optics, Vol. 36, Issue 21, pp. 5072-5077 (1997)
http://dx.doi.org/10.1364/AO.36.005072


View Full Text Article

Enhanced HTML    Acrobat PDF (407 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Flexible hollow glass waveguides with internal metallic and dielectric coatings have been used to deliver high-peak-power transversely excited atmosphere CO2 laser energy. The straight guide loss is as low as 0.17 dB/m for 1000-µm-bore guides and 0.46 dB/m for 530-µm-bore guides propagating the HE11 mode. The loss increases to 0.93 and 1.36 dB/m, respectively, when guides are bent to a radius of 0.25 m. The hollow glass waveguides have been used to deliver pulsed CO2 laser energy successfully with a peak power of 0.7 MW and an energy of 350 mJ per pulse with a gas purge through the hollow core. The delivered average power is as high as 27 W. It is concluded that these waveguides are promising candidates for pulsed CO2 laser delivery in medical and surgical applications.

© 1997 Optical Society of America

History
Original Manuscript: October 28, 1996
Revised Manuscript: March 3, 1997
Published: July 20, 1997

Citation
Jiwang Dai and James A. Harrington, "High-peak-power, pulsed CO2 laser light delivery by hollow glass waveguides," Appl. Opt. 36, 5072-5077 (1997)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-36-21-5072


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. T. Walsh, T. F. Deutsch, “Pulsed CO2 laser tissue ablation: measurement and modeling of ablation rate,” Lasers Med. Surgery 8, 264–275 (1988). [CrossRef]
  2. J. T. Walsh, T. F. Deutsch, “Pulsed CO2 laser ablation of tissue: effect of mechanical properties,” IEEE Trans. Biomed. Eng. 36, 1195–1201 (1989). [CrossRef] [PubMed]
  3. M. Luckac, F. Hocevar, S. Cencic, W. Neuberger, “Effects of pulsed CO2 and Er:YAG lasers on enamel and dentin,” in Lasers in Orthopedic, Dental, and Veterinary Medicine II, D. Gal, S.J. O’Brien, C. Vangsness, J. M. White, H. A. Wigdor, eds., Proc. SPIE1880, 169–175 (1993).
  4. V. B. Krapchev, C. Rabii, J. A. Harrington, “Novel CO2 laser system for hard tissue ablation,” in Laser Surgery: Advanced Characterization, Therapeutics, and Systems IV, R. R. Anderson, ed., Proc. SPIE2128, 341–348 (1994).
  5. G. Meese, R. Zuhrt, “Therapy of deep caries by transverse excited atmosphere pressure carbon dioxide laser: an in vitro investigation,” in Lasers in Othopedic, Dental and Veterinary Medicine II, D. Gal, S. J. O’Brien, C. Vangsness, J.M. White, H. A. Wigdor, eds., Proc. SPIE1880, 193–198 (1993).
  6. H. Wigdor, J. T. Walsh, J. Featherstone, S. Visuri, D. Fried, J. Waldvogel, “Lasers in dentistry,” Lasers Med. Surgery 16, 103–133 (1995). [CrossRef]
  7. D. Bunimovich, I. Nagli, A. Katzir, “Absorption measurements of mixed silver halide crystals and fibers by laser calorimetry,” Appl. Opt. 33, 117–119 (1994). [CrossRef] [PubMed]
  8. V. G. Artjushenko, L. N. Butvina, V. V. Vojtsekhovsky, E. M. Dianov, J. G. Kolesnikov, “Mechanisms of optical losses in polycrystalline KRS-5 fibers,” J. Lightwave Technol. LT-4, 461–465 (1986). [CrossRef]
  9. C. C. Gregory, J. A. Harrington, “High peak power CO2 laser transmission by hollow sapphire waveguides,” Appl. Opt. 32, 3976–3980 (1993).
  10. Y. Matsuura, T. Abel, J. A. Harrington, “Optical properties of small-bore hollow glass waveguides,” Appl. Opt. 34, 6842–6847 (1995). [CrossRef] [PubMed]
  11. T. Abel, J. Hirsch, J. A. Harrington, “Hollow glass waveguides for broadband infrared transmission,” Opt. Lett. 19, 1034–1036 (1994). [CrossRef] [PubMed]
  12. Y. Matsuura, M. Miyagi, “Er:YAG, CO, and CO2 laser delivery by ZnS-coated Ag hollow waveguides,” Appl. Opt. 32, 6598–6601 (1993). [CrossRef] [PubMed]
  13. M. Saito, S. Sato, M. Miyagi, “Loss characteristics of infrared hollow waveguides in multimode transmission,” J. Opt. Soc. Am. A 10, 277–282 (1993). [CrossRef]
  14. N. Croitoru, J. Dror, I. Gannot, “Characterization of hollow fibers for the transmission of infrared radiation,” Appl. Opt. 29, 1805–1809 (1990). [CrossRef] [PubMed]
  15. R. L. Kozodoy, A. T. Pagkalinawan, J. A. Harrington, “Small-bore hollow waveguides for delivery of 3-µm laser radiation,” Appl. Opt. 35, 1077–1082 (1996). [CrossRef] [PubMed]
  16. Y. Matsuura, T. Abel, J. Hirsch, J. A. Harrington, “Small-bore hollow waveguide for delivery of near single-mode IR laser radiation,” Electron. Lett. 30, 1688–1690 (1994). [CrossRef]
  17. E. Snitzer, Advances in Quantum Electronics (Columbia U. Press, New York, 1961), p. 361.
  18. M. Miyagi, K. Harada, S. Kawakami, “Wave propagation and attenuation in the general class of circular hollow waveguides with uniform curvature,” IEEE Trans. Microwave Theory Tech. MTT-32, 513–521 (1984). [CrossRef]
  19. E. A. J. Marcatili, R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964). [CrossRef]
  20. D. Mendlovic, E. Goldenberg, S. Ruschin, J. Dror, N. Croitoru, “Ray model for transmission of metallic-dielectric hollow bent cylindrical waveguides,” Appl. Opt. 28, 708–712 (1989). [CrossRef] [PubMed]
  21. S. Abe, M. Miyagi, “Transmission and attenuation of the dominant mode in uniformly bent circular hollow waveguides for the infrared: scalar analysis,” IEEE Trans. Microwave Theory Tech. 39, 230–238 (1991). [CrossRef]
  22. M. Miyagi, S. Karasawa, “Waveguide losses in sharply bent circular hollow waveguides,” Appl. Opt. 29, 367–370 (1990). [CrossRef] [PubMed]
  23. R. K. Nubling, J. A. Harrington, “Hollow-waveguide delivery systems for high-power, industrial CO2 lasers,” Appl. Opt. 35, 372–380 (1996). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited