OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 36, Iss. 22 — Aug. 1, 1997
  • pp: 5310–5316

Spatial phase shifting in electronic speckle pattern interferometry: minimization of phase reconstruction errors

Thorsten Bothe, Jan Burke, and Heinz Helmers  »View Author Affiliations


Applied Optics, Vol. 36, Issue 22, pp. 5310-5316 (1997)
http://dx.doi.org/10.1364/AO.36.005310


View Full Text Article

Enhanced HTML    Acrobat PDF (3131 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The advantages of spatial phase shifting (SPS) compared with temporal phase shifting in the field of electronic speckle pattern interferometry are described. Some periodic phase reconstruction errors occurring in SPS are discussed. It is shown that these errors become minimal for a spatial phase-shift angle of 2π/3. Furthermore, a modified phase reconstruction formula is presented by which the noise in the reconstructed phase map is reduced.

© 1997 Optical Society of America

History
Original Manuscript: July 22, 1996
Revised Manuscript: November 12, 1996
Published: August 1, 1997

Citation
Thorsten Bothe, Jan Burke, and Heinz Helmers, "Spatial phase shifting in electronic speckle pattern interferometry: minimization of phase reconstruction errors," Appl. Opt. 36, 5310-5316 (1997)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-36-22-5310


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. E. Greivenkamp, J. H. Bruning, “Phase shifting interferometry,” in Optical Shop Testing, D. Malacara ed. (Wiles, New York, 1992), pp. 501–598.
  2. K. Creath, “Temporal phase measurement methods,” in Interferogram Analysis, D. W. Robinson, G. T. Reid, eds. (Institute of Physics Publishing, Bristol, 1993), pp. 94–140.
  3. S. Nakadate, H. Saito, “Fringe scanning speckle-pattern interferometry,” Appl. Opt. 24, 2172–2180 (1985). [CrossRef] [PubMed]
  4. K. Creath, “Phase-shifting speckle interferometry,” Appl. Opt. 24, 3053–3058 (1985). [CrossRef] [PubMed]
  5. R. Smythe, R. Moore, “Instantaneous phase measuring interferometry,” Opt. Eng. 23, 361–364 (1984). [CrossRef]
  6. O. Y. Kwon, “Multichannel phase-shifted interferometer,” Opt. Lett. 9, 59–61 (1984). [CrossRef] [PubMed]
  7. M. Kujawinska, “Spatial phase measurement methods,” in Interferogram Analysis, D. W. Robinson, G. T. Reid, eds. (Institute of Physics Publishing, Bristol, 1993), pp. 141–193.
  8. Y. Ichioka, M. Inuiya, “Direct phase detecting system,” Appl. Opt. 11, 1507–1514 (1972). [CrossRef] [PubMed]
  9. L. Mertz, “Real-time fringe-pattern analysis,” Appl. Opt. 22, 1535–1539 (1983). [CrossRef] [PubMed]
  10. D. M. Shough, O. Y. Kwon, D. F. Leary, “High-speed interferometric measurements of aerodynamic phenomena,” in Propagation of High-Energy Laser Beams Through the Earth’s Atmosphere, P. B. Ulrich, L. E. Wilson, eds., Proc. SPIE Vol. 1221, 394–403 (1990). [CrossRef]
  11. M. Küchel, “Verfahren zur Messung eines phasenmodulierten Signals,” Offenlegungsschrift Deutsches PatentamtDE 4014019 (7Nov.1991).
  12. D. C. Williams, N. S. Nassar, J. E. Banyard, M. S. Virdee, “Digital phase-step interferometry: a simplified approach,” Opt. Laser Technol. 23, 147–150 (1991). [CrossRef]
  13. P. H. Chan, P. J. Bryanston–Cross, S. C. Parker, “Fringe-pattern analysis using a spatial phase-stepping method with automatic phase unwrapping,” Meas. Sci. Technol. 6, 1250–1259 (1995). [CrossRef]
  14. M. Servin, F. J. Cuevas, “A novel technique for spatial phase-shifting interferometry,” J. Mod. Opt. 42, 1853–1862 (1995). [CrossRef]
  15. H. Steinbichler, J. Gutjahr, “Verfahren zur direkten Phasenmessung von Strahlung, insbesondere Lichtstrahlung, und Vorrichtung zur Durchführung dieses Verfahrens,” Offenlegungsschrift Deutsches PatentamtDE 3930632 A1 (14Mar.1991).
  16. S. Leidenbach, “Die direkte Phasenmessung—ein neues Verfahren zur Berechnung von Phasenbildern aus nur einem Intensitätsbild,” Proc. Laser 1, 68–72 (1991).
  17. G. Pedrini, B. Pfister, H. Tiziani, “Double pulse-electronic speckle interferometry,” J. Mod. Opt. 40, 89–96 (1993). [CrossRef]
  18. J. Schwider, R. Burow, K. E. Elssner, J. Grzanna, R. Spolaczyk, K. Merkel, “Digital wave-front measuring interferometry: some systematic error sources,” Appl. Opt. 22, 3421–3432 (1983). [CrossRef] [PubMed]
  19. J. Schwider, “Advanced evaluation techniques in interferometry,” in Progress in Optics XXVIII, E. Wolff, ed. (Elsevier, Amsterdam, 1990), pp. 271–359. [CrossRef]
  20. J. Schmit-Wojciak, K. Creath, “Spatial and temporal phase-measurement techniques: a comparison of major error sources in one dimension,” in Interferometry: Techniques and Analysis, G. M. Brown, M. Kujawinska, O. Y. Kwon, G. T. Reid, eds., Proc. SPIE1755, 202–211 (1992).
  21. C. P. Brophy, “Effect of intensity error correlation on the computed phase of phase-shifting interferometry,” J. Opt. Soc. Am. A 7, 537–541 (1990). [CrossRef]
  22. T. Maack, R. Kowarschik, “Camera influence on the phase measurement accuracy of a phase shifting speckle interferometer,” Appl. Opt. 35, 3514–3524 (1996). [CrossRef] [PubMed]
  23. H. Kadono, S. Toyooka, “Statistical interferometry based on the statistics of speckle phase,” Opt. Lett. 16, 883–885 (1991). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited