OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 36, Iss. 22 — Aug. 1, 1997
  • pp: 5421–5440

Synchrotron-radiation-operated cryogenic electrical-substitution radiometer as the high-accuracy primary detector standard in the ultraviolet, vacuum-ultraviolet, and soft-x-ray spectral ranges

H. Rabus, V. Persch, and G. Ulm  »View Author Affiliations


Applied Optics, Vol. 36, Issue 22, pp. 5421-5440 (1997)
http://dx.doi.org/10.1364/AO.36.005421


View Full Text Article

Enhanced HTML    Acrobat PDF (545 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The accuracy of detector calibration in the UV, vacuum-ultraviolet, and soft-x-ray spectral ranges could be significantly improved by the use of the synchrotron radiation electrical substitution radiometer (SYRES) as the primary detector standard. The SYRES radiometer is optimized for use with spectrally dispersed synchrotron radiation as supplied by two monochromator beam lines in the radiometry laboratory of the Physikalisch-Technische Bundesanstalt at the Berlin electron-storage ring (BESSY). Wavelength ranges from 0.8 to 25 nm and from 35 to 400 nm are covered. The typically available radiant power of ∼1–10 µW can be measured with the SYRES radiometer with a standard relative uncertainty of less than 0.2%. The spectral responsivity of qualified photodiodes for use as secondary detector standards is determined by direct comparison with the primary detector standard at an arbitrary wavelength. At present, the scale of spectral responsivity is realized with a standard relative uncertainty of well below 1% in the spectral ranges 0.8–3.5 nm, 5–25 nm, and 120–400 nm. We provide a comprehensive description of the SYRES radiometer and of the two facilities for detector calibration in the UV and vacuum-ultraviolet spectral ranges and in the soft-x-ray spectral range, respectively, and we discuss the achievable uncertainties in the calibration of detectors.

© 1997 Optical Society of America

History
Original Manuscript: January 10, 1997
Revised Manuscript: April 10, 1997
Published: August 1, 1997

Citation
H. Rabus, V. Persch, and G. Ulm, "Synchrotron-radiation-operated cryogenic electrical-substitution radiometer as the high-accuracy primary detector standard in the ultraviolet, vacuum-ultraviolet, and soft-x-ray spectral ranges," Appl. Opt. 36, 5421-5440 (1997)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-36-22-5421


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Hengstberger, ed., Absolute Radiometry: Electrical Calibrated Thermal Detectors of Optical Radiation (Academic, Boston, 1989), Chaps. 1, 3.
  2. J. E. Martin, in Metrology at the Frontiers of Physics and Technology, L. Crovini, T. J. Quinn, eds. (North-Holland, Amsterdam, 1992), pp. 361–404.
  3. J. E. Martin, N. P. Fox, P. G. Key, “A cryogenic radiometer for absolute radiometric measurements,” Metrologia 21, 147–155 (1985). [CrossRef]
  4. T. J. Quinn, J. E. Martin, “A radiometric determination of the Stefan–Boltzmann constant and thermodynamic temperatures between -40 °C and +100 °C,” Philos. Trans. R. Soc. London A316, 85–189 (1985). [CrossRef]
  5. N. P. Fox, “Radiometry with cryogenic radiometers and semiconductor photodiodes,” Metrologia 32, 535–543 (1995–1996). [CrossRef]
  6. T. J. Quinn, J. E. Martin, “Cryogenic radiometry, prospects for further improvements in accuracy,” Metrologia 28, 155–161 (1991). [CrossRef]
  7. T. R. Gentile, J. M. Houston, J. E. Hardis, C. L. Cromer, A. C. Parr, “National Institute of Standards and Technology high-accuracy cryogenic radiometer,” Appl. Opt. 35, 1056–1068 (1996). [CrossRef] [PubMed]
  8. N. P. Fox, J. E. Martin, “A further intercomparison of two cryogenic radiometers,” in Optical Radiation Measurements II, J. M. Palmer, ed., Proc. SPIE1109, 227–235 (1989). [CrossRef]
  9. N. P. Fox, J. E. Martin, “Comparison of two cryogenic radiometers by determining the absolute spectral responsivity of silicon photodiodes with an uncertainty of 0.02%,” Appl. Opt. 29, 4686–4693 (1990). [CrossRef] [PubMed]
  10. P. V. Foukal, C. Hoyt, H. Kochling, P. Miller, “Cryogenic absolute radiometers as laboratory irradiance standards, remote sensing detectors, and pyroheliometers,” Appl. Opt. 29, 988–993 (1990). [CrossRef] [PubMed]
  11. L. Fu, J. Fischer, “Characterization of photodiodes in the visible spectral range based on cryogenic radiometry,” Metrologia 30, 297–303 (1993). [CrossRef]
  12. T. R. Gentile, J. M. Houston, C. L. Cromer, “Realization of a scale of absolute spectral response using the National Institute of Standards and Technology high-accuracy cryogenic radiometer,” Appl. Opt. 35, 4392–4403 (1996). [CrossRef] [PubMed]
  13. T. Verpula, H. Seppä, J.-M. Saari, “Optical power calibrator based on stabilized green He–Ne laser and a cryogenic absolute radiometer,” IEEE Trans. Instrum. Meas. 38, 558–564 (1989). [CrossRef]
  14. T. Verpula, L. Liedquist, H. Ludvigsen, H. Reyn, J. de Vreede, “Comparison of quantum-efficient silicon photodetectors with a cryogenic absolute radiometer at laser wavelength 543.5 nm,” Metrologia 28, 349–352 (1991). [CrossRef]
  15. R. Köhler, R. Goebel, R. Pello, O. Touayar, J. Bastie, “First measurements with the BIPM cryogenic radiometer and comparison with the INM cryogenic radiometer,” Metrologia 32, 551–555 (1995–1996). [CrossRef]
  16. O. Touayar, H. Reyn, J. Bastie, T. Varpula, “Indirect comparison of cryogenic radiometers from the INM (France) and the VTT (Finland) with a QED-200 from the VSL (Netherlands),” Metrologia 32, 561–564 (1995–1996). [CrossRef]
  17. S. P. Morozova, V. A. Konovodchenko, V. I. Sapritzky, B. E. Lisiansky, P. A. Morozov, U. A. Melenevsky, A. G. Petic, “An absolute cryogenic radiometer for laser calibration and characterization of photodetectors,” Metrologia 32, 557–560 (1995–1996). [CrossRef]
  18. K. D. Stock, H. Hofer, “PTB primary standard for optical radiant power: transfer-optimized facility in the clean-room centre,” Metrologia 32, 545–549 (1995–1996). [CrossRef]
  19. M. G. White, A. Bittar, “Uniformity and quantum efficiency of single and trap-configured silicon photodiodes,” Metrologia 30, 361–364 (1993). [CrossRef]
  20. W. Budde, “Definition of the linearity range of Si photodiodes,” Appl. Opt. 22, 1780–1784 (1983). [CrossRef] [PubMed]
  21. J. Fischer, L. Fu, “Photodiode nonlinearity measurement with an intensity stabilized laser as a radiation source,” Appl. Opt. 32, 4187–4190 (1993). [CrossRef] [PubMed]
  22. E. F. Zalewski, C. R. Duda, “Silicon photodiode device with 100% external quantum efficiency,” Appl. Opt. 22, 2867–2873 (1983). [CrossRef] [PubMed]
  23. N. P. Fox, “Trap detectors and their properties,” Metrologia 28, 197–202 (1991). [CrossRef]
  24. M. Stock, J. Fischer, R. Friedrich, H. J. Jung, B. Wende, “The double-heatpipe blackbody: a high-accuracy standard source of spectral irradiance for measurements of T-T90,” Metrologia 32, 441–444 (1995–1996). [CrossRef]
  25. T. C. Larason, S. S. Bruce, C. L. Cromer, “The NIST high accuracy scale for absolute spectral response from 406 nm to 920 nm,” J. Res. Natl. Inst. Stand. Technol. 101, 133–140 (1996). [CrossRef]
  26. J. Geist, A. M. Robinson, C. R. James, “Numerical modeling of silicon photodiodes for high-accuracy applications. Part III: Interpolating and extrapolating internal quantum-efficiency calibrations,” J. Res. Natl. Inst. Stand. Technol. 96, 481–492 (1991). [CrossRef]
  27. N. M. Durant, N. P. Fox, “A physical basis for the extrapolation of silicon photodiode efficiency into the ultraviolet,” Metrologia 30, 345–350 (1993). [CrossRef]
  28. A. Lau-Främbs, U. Kroth, H. Rabus, E. Tegeler, G. Ulm, B. Wende, “First results with the new PTB cryogenic radiometer for the vacuum ultraviolet spectral range,” Metrologia 32, 571–574 (1995–1996). [CrossRef]
  29. F. Scholze, M. Krumrey, P. Müller, D. Fuchs, “Plane grating monochromator beam line for VUV radiometry,” Rev. Sci. Instrum. 65, 3229–3232 (1994). [CrossRef]
  30. A. Lau-Främbs, U. Kroth, H. Rabus, E. Tegeler, G. Ulm, “New detector calibration facility for the wavelength range 35–400 nm based on an electrical substitution radiometer,” Rev. Sci. Instrum. 66, 2324–2326 (1995). [CrossRef]
  31. G. Ulm, B. Wende, “The radiometry laboratory of PTB at BESSY,” Rev. Sci. Instrum. 66, 2244–2247 (1995). [CrossRef]
  32. B. Wende, “Radiometry with synchrotron radiation,” Metrologia 32, 419–424 (1995–1996). [CrossRef]
  33. H. Rabus, F. Scholze, R. Thornagel, G. Ulm, “Detector calibration at the PTB radiometry laboratory at BESSY,” Nucl. Instrum. Methods A 377, 209–216 (1996). [CrossRef]
  34. L. P. Boivin, K. Gibb, “Monochromator-based cryogenic radiometry at the NRCC,” Metrologia 32, 565–570 (1995–1996). [CrossRef]
  35. J. A. R. Samson, “Absolute intensity measurement in the vacuum ultraviolet,” J. Opt. Soc. Am. 54, 6–15 (1964). [CrossRef]
  36. L. R. Canfield, N. Swanson, “Far ultraviolet detector standards,” J. Res. Natl. Bur. Stand. 92, 97–112 (1987). [CrossRef]
  37. L. R. Canfield, “New far UV detector calibration facility at the National Bureau of Standards,” Appl. Opt. 26, 3831–3837 (1987). [CrossRef] [PubMed]
  38. T. Saito, H. Onuki, “Detector calibration in the 10–60 nm spectral range at the Electrotechnical Laboratory,” J. Opt. (Paris) 24, 23–30 (1993). [CrossRef]
  39. T. Saito, H. Onuki, “Detector calibration in the wavelength region 10–100 nm based on windowless rare gas ionisation chamber,” Metrologia 32, 525–529 (1995–1996). [CrossRef]
  40. J. A. R. Samson, G. N. Haddad, “Absolute photon flux measurement in the vacuum ultraviolet,” J. Opt. Soc. Am. 64, 47–54 (1974). [CrossRef]
  41. M. L. Furst, R. M. Graves, L. R. Canfield, R. E. Vest, “Radiometry at the NIST SURF II storage ring facility,” Rev. Sci. Instrum. 66, 2257–2259 (1995). [CrossRef]
  42. R. E. Vest, L. R. Canfield, M. L. Furst, R. P. Madden, N. Swanson, “Dual grating monochromator for detector calibration using synchrotron radiation as an absolute source at NIST,” Nucl. Instrum. Methods A 347, 291–294 (1994). [CrossRef]
  43. M. Krumrey, E. Tegeler, R. Thornagel, G. Ulm, “Calibration of semiconductor photodiodes as soft-x-ray detectors,” Rev. Sci. Instrum. 60, 2291–2294 (1989). [CrossRef]
  44. D. Arnold, G. Ulm, “Electron storage ring BESSY as a source of calculable spectral photon flux in the x-ray region,” Rev. Sci. Instrum. 63, 1539–1542 (1992). [CrossRef]
  45. F. Scholze, G. Ulm, “Characterization of a windowless Si(Li) detector in the photon energy range 0.1–5 keV,” Nucl. Instrum. Methods A 339, 49–54 (1994). [CrossRef]
  46. U. Kroth, N. Saito, E. Tegeler, “Quantum efficiency of a semiconductor photodiode in the VUV determined by comparison with a proportional counter in monochromatized synchrotron radiation,” Appl. Opt. 29, 2659–2661 (1990). [CrossRef] [PubMed]
  47. M. Krumrey, E. Tegeler, “Self-calibration of semiconductor photodiodes in the soft-x-ray region,” Rev. Sci. Instrum. 63, 797–801 (1992). [CrossRef]
  48. N. Ahr, E. Tegeler, “Electrically calibrated cryogenic bolometers as primary detectors in the soft-x-ray region,” Nucl. Instrum. Methods A 319, 387–392 (1992). [CrossRef]
  49. R. Köhler, R. Goebel, R. Pello, “Report on the international comparison of spectral responsivity of silicon detectors,” Metrologia 32, 463–468 (1995–1996). [CrossRef]
  50. Z. M. Zhang, R. U. Datla, S. R. Lorentz, H. C. Tang, “Thermal modeling of absolute cryogenic radiometers,” J. Heat Transfer 116, 993–998 (1994). [CrossRef]
  51. L. Fu, “Aufbau einer Skala für spektrale Strahlungsleistung im Spektralbereich 250 nm bis 800 nm mit einem Kryoradiometer als Primärnormal und Photodioden als Transfernormalen,” Ph.D. thesis (Technical University Berlin, Berlin, Germany, 1993).
  52. K. D. Stock, H. Hofer, “Present state of the PTB primary standard for radiant power based on cryogenic radiometry,” Metrologia 30, 291–296 (1993). [CrossRef]
  53. R. U. Datla, K. Stock, A. C. Parr, C. C. Hoyt, P. J. Miller, P. V. Foukal, “Characterization of an absolute cryogenic radiometer as a standard detector for radiant-power measurement,” Appl. Opt. 31, 7219–7225 (1992). [CrossRef] [PubMed]
  54. S. R. Lorentz, S. C. Ebner, J. H. Walker, R. U. Datla, “NIST low-background infrared spectral calibration facility,” Metrologia 32, 621–624 (1995–1996). [CrossRef]
  55. Reference to commercial products is provided in the text to specify adequately the experimental procedure and equipment used. In no case does such identification imply recommendation or endorsement by the Physikalisch-Technische Bundesanstalt, nor does it imply that the products are necessarily the best available for the purpose.
  56. Guide to the Expression of Uncertainty in Measurement [International Organization for Standardization, (ISO), Geneva, Switzerland, 1993].
  57. F. Hengstberger, “An improved theory of the instrumental corrections for absolute radiometers,” Metrologia 13, 69–78 (1977). [CrossRef]
  58. J. C. de Vos, “Evaluation of the quality of a blackbody,” Physica 20, 669–689 (1954). [CrossRef]
  59. D. Fuchs, M. Krumrey, T. Lederer, P. Müller, F. Scholze, G. Ulm, “High precision soft-x-ray reflectometer,” Rev. Sci. Instrum. 66, 2248–2251 (1995). [CrossRef]
  60. Ion etched holographic grating, 600 grooves/mm, blank material: quartz, coating: aluminum with a MgF2 protective coating, manufacturer: Hyperfine Inc., Boulder, Colo.
  61. Ion etched holographic grating, 1200 grooves/mm, blaze wavelength: 60 nm, blank material: quartz, coating: silicon carbide, manufacturer: Hyperfine Inc., Boulder, Colo.
  62. Ion etched holographic grating, 2400 grooves/mm, blank material: quartz, coating: iridium–osmium, manufacturer: Hyperfine Inc., Boulder, Colo.
  63. H. Petersen, “The plane grating and elliptical mirror: a new optical configuration for monochromators,” Opt. Commun. 40, 402–406 (1982). [CrossRef]
  64. Both gratings: blank material: Zerodur, coating: gold, manufacturer: Zeiss, Oberkochem, Germany; grating 1: original ruled, 366 grooves/mm, blaze angle: 3.9°; grating 2: ion etched holographic, 1221 grooves/mm, blaze angle: 1.4°.
  65. N. M. Durant, N. Fox, “Evaluation of solid-state detectors for radiometric applications,” Metrologia 32, 505–508 (1995–1996). [CrossRef]
  66. R. Goebel, R. Köhler, R. Pello, “Some effects of low radiant power UV radiation on silicon photodiodes,” Metrologia 32, 515–518 (1995–1996). [CrossRef]
  67. M. Razeghi, A. Rogalski, “Semiconductor ultraviolet detectors,” J. Appl. Phys. 79, 7433–7473 (1996). [CrossRef]
  68. E. Tegeler, M. Krumrey, “Stability of semiconductor photodiodes as VUV detectors,” Nucl. Instrum. Methods A 282, 701–705 (1989). [CrossRef]
  69. A. D. Wilson, H. Lyall, “Design of an UV radiometer,” Appl. Opt. 26, 4530–4546 (1986). [CrossRef]
  70. R. E. Vest, L. R. Canfield, “Evaluation of Au/GaAsP and Au/GaP Schottky photodiodes as radiometric detectors in the EUV,” in Proceedings of the Synchrotron Radiation Instrumentation Conference (SRI) 1995, Rev. Sci. Instrum. (special issue)67(9) CD-ROM (1996).
  71. A. Lau-Främbs, “Entwicklung der Radiometrie mit Synchrotronstrahlung im Spektralbereich 170 bis 400 nm mit einem Kryoradiometer als Primärnormal und Halbleiter-Photodioden als Transfernormale,” Ph.D. thesis (Technical University Berlin, Berlin, Germany, 1995).
  72. K. Solt, H. Melchior, U. Kroth, P. Kuschnerus, V. Persch, H. Rabus, M. Richter, G. Ulm, “PtSi-n-Si Schottky-barrier photodetectors with stable spectral responsivity in the 120 nm to 250 nm spectral range,” Appl. Phys. Lett. 69, 3662–3664 (1996). [CrossRef]
  73. F. Scholze, H. Rabus, G. Ulm, “Measurement of the mean electron-hole pair creation energy in crystalline silicon for photons in the 50 eV to 1500 eV spectral range,” Appl. Phys. Lett. 69, 2974–2976 (1996). [CrossRef]
  74. R. Korde, J. Geist, “Quantum effiency stability of silicon photodiodes,” Appl. Opt. 26, 5284–5290 (1987). [CrossRef] [PubMed]
  75. R. Korde, J. S. Cable, L. R. Canfield, “One gigarad passivating nitrided oxides for 100% internal quantum efficiency silicon photodiodes,” IEEE Trans. Nucl. Sci. 40, 1655–1659 (1993). [CrossRef]
  76. E. M. Gullikson, R. Korde, L. R. Canfield, R. E. Vest, “Stable silicon photodiodes for absolute intensity measurements in the VUV and soft-x-ray regions,” J. Electron Spectrosc. Relat. Phenom. 80, 313–316 (1996). [CrossRef]
  77. F. Scholze, H. Rabus, G. Ulm, “Spectral responsivity of silicon photodiodes: high-accuracy measurement and improved self-calibration in the soft-x-ray spectral range,” in EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy VII, O. H. Siegmund, M. A. Gummin, eds., Proc. SPIE2808, 534–543 (1996).
  78. G. Prigozhin, M. Bautz, S. Kissel, G. Ricker, S. Kraft, F. Scholze, G. Ulm, “Absolute measurement of oxygen edge structure in the quantum efficiency of x-ray CCD’s,” IEEE Trans. Nucl. Meas. 44 (1997) (Proceedings of the 1996 Nuclear Science Symposium, Anaheim, Calif., November 1996).
  79. R. Klein, M. Krumrey, H. Rabus, F. Scholze, R. Thornagel, G. Ulm, B. Wende, “PTB Laboratory for Radiometry at BESSY II,” in BESSY Annual Report 1995, ISSN 0179-4159 (BESSY, Berlin, Germany, 1996), pp. 114–118.
  80. U. Flechsig, F. Eggenstein, F. Senf, W. Gudat, R. Klein, H. Rabus, G. Ulm, “A plane grating monochromator for the PTB undulator beamline at BESSY II,” in BESSY Annual Report 1995, ISSN 0179-4159 (BESSY, Berlin, Germany, 1996), pp. 544–547.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited