OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 36, Iss. 24 — Aug. 20, 1997
  • pp: 5827–5838

Design and testing of a large-aperture, high-gain, Brewster’s angle zigzag Nd:glass slab amplifier

Milton J. Shoup, III, John H. Kelly, and David L. Smith  »View Author Affiliations

Applied Optics, Vol. 36, Issue 24, pp. 5827-5838 (1997)

View Full Text Article

Enhanced HTML    Acrobat PDF (490 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



At the University of Rochester we have constructed and tested a large-aperture, (1.0 × 6.5 cm), high-gain (8) Brewster’s angle zigzag Nd:glass amplifier with a repetition rate of 2 Hz. This amplifier has a gain uniformity of ±3% and a maximum stress-induced depolarization <2.5%.

© 1997 Optical Society of America

Original Manuscript: August 13, 1996
Revised Manuscript: April 8, 1997
Published: August 20, 1997

Milton J. Shoup, John H. Kelly, and David L. Smith, "Design and testing of a large-aperture, high-gain, Brewster’s angle zigzag Nd:glass slab amplifier," Appl. Opt. 36, 5827-5838 (1997)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. P. Chernoch, S. W. Martin, “Multiple internal reflection face-pumped laser,” U.S. patent3,633,126 (17April1969).
  2. R. L. Byer, “Slab geometry lasers,” presented at the International Lasers and Electro-Optic Exhibition, Tokyo, Japan, 26 January 1985.
  3. R. L. Byer, “Improved solid-state laser sources,” (Lawrence Livermore National Laboratory, Livermore, Calif., 1982).
  4. J. M. Eggleston, T. J. Kane, K. Kuhn, J. Unternahrer, R. L. Byer, “The slab geometry laser—Part 1. Theory,” IEEE J. Quantum Electron. QE-20, 289–301 (1984). [CrossRef]
  5. T. J. Kane, J. M. Eggleston, R. L. Byer, “The slab geometry laser—Part II. Thermal effects in a finite slab,” IEEE J. Quantum Electron. QE-21, 1195–1210 (1985). [CrossRef]
  6. J. M. Eggleston, G. F. Albrecht, R. A. Petr, J. F. Zumdieck, “A high average power dual slab Nd-glass zigzag laser system,” IEEE J. Quantum Electron. 22, 2092–2098 (1986). [CrossRef]
  7. The largest body of research was described at the Lawrence Livermore National Laboratory Medium-Average Power Conferences. Compendia of that research appear in the Lawrence Livermore National Laboratory Laser Program Annual Reports (Lawrence Livermore National Laboratory, Livermore, Calif., 1985–1987).
  8. Product of Hoya Optics, Inc., 3400 Edison Way, Fremont, Calif. 94538. Use of a particular product does indicate endorsement by the University of Rochester.
  9. D. C. Brown, “Glass laser physics,” in High-Peak-Power Nd:Glass Laser Systems, Springer Series in Optical Sciences, D. L. MacAdam, ed. (Springer-Verlag, Berlin, 1981), Vol. 25, p. 45.
  10. J. H. Kelly, D. C. Brown, J. A. Abate, K. Teegarden, “Dynamic pumping model for amplifier performance predictions,” Appl. Opt. 20, 1595–1605 (1981). [CrossRef] [PubMed]
  11. M. J. Minot, “Single-layer, gradient refractive index antireflection films effective from 0.35 to 2.5 µ,” J. Opt. Soc. Am. 66, 515–519 (1976). [CrossRef]
  12. L. M. Cook, W. H. Lowdermilk, D. Milam, J. E. Swain, “Antireflective surfaces for high-energy laser optics formed by neutral-solution processing,” Appl. Opt. 21, 1482–1485 (1982). [CrossRef] [PubMed]
  13. W. W. Simmons, W. E. Warren, “Modelling and simulation of large solid state laser systems,” in Modeling and Simulation of Optoelectronic Systems, J. D. O’Keefe, ed., Proc. SPIE642, 166–172 (1986).Available as a (1986). [CrossRef]
  14. C. B. Dane, L. E. Zapata, W. A. Neuman, M. A. Norton, L. A. Hackel, “Design and operation of a 150 W near diffraction-limited laser amplifier with SBS wavefront correction,” IEEE J. Quantum Electron. 31, 148–163 (1995). [CrossRef]
  15. This is conservative. Preferential deposition of energy near the slab faces that is due to Beer’s law absorption helps the thermal loading problem. See J. B. Trenholme, “Temperature and stress in a pumped glass slab,” Lawrence Livermore National Laboratory Laser Program Annual Report 1982, (Lawrence Livermore National Laboratory, Livermore, Calif., 1983), pp. 7-112–7-114.
  16. W. F. Krupke, M. D. Shinn, J. E. Marion, J. A. Caird, S. E. Stokowski, “Spectroscopic, optical, and thermomechanical properties of neodymium- and chromium-doped gadolinium scandium gallium garnet,” J. Opt. Soc. Am. B 3, 102–113 (1986). [CrossRef]
  17. M. S. Mangir, D. A. Rockwell, “Measurements of heating and energy storage in flashlamp-pumped Nd:YAG and Nd-doped phosphate laser glasses,” IEEE J. Quantum Electron. QE-22, 574–580 (1986). [CrossRef]
  18. K. A. Cerqua, M. J. Shoup, D. L. Smith, S. D. Jacobs, J. H. Kelly, “Strengthened phosphate glass in a high rep rate active-mirror amplifier geometry,” Appl. Opt. 27, 2567–2572 (1988). [CrossRef] [PubMed]
  19. J. Rinefierd, S. D. Jacobs, D. Brown, J. Abate, O. Lewis, H. Applebaum, “Liquids for high repetition rate glass laser systems,” in Laser-Induced Damage in Optical Materials: 1978, Natl. Bur. Stand. (U.S.) Spec. Publ. 541 (U.S. GPO, Washington, D.C., 1979), pp. 109–121.
  20. W. F. Hagen, M. O. Riley, “Evanescent-wave control,” Lawrence Livermore National Laboratory Laser Program Annual Report 1985, (Lawrence Livermore National Laboratory, Livermore, Calif., 1986), pp. 9-69–9-77.
  21. M. A. Summers, “We have developed a set of 3-D models which can be used to design zig-zag slab amplifiers,” presented at the Medium Average Power Solid-State Laser Technical Information Seminar, Lawrence Livermore National Laboratory, Livermore, Calif., 4 November 1988, pp. 6-1–6-31.
  22. Hoya Optics, Inc., product literature, 3400 Edison Way, Fremont, Calif. 94538.
  23. The code used here is an upgraded version of the zap Laser Analysis Program written by J. H. Alexander, M. Froost, J. E. Welch, Advanced Research Projects Agency Order 660, Contract N00014-70-C-0341 (Systems, Science and Software, La Jolla, Calif., June1971).
  24. A. C. Erlandson, “Pulse length scaling,” Lawrence Livermore National Laboratory Laser Program Annual Report 1985, (Lawrence Livermore National Laboratory, Livermore, Calif., 1986), pp. 7-18–7-25.
  25. Technical Bulletin 2, ILC Technology, 399 Java Drive, Sunnyvale, Calif. 94089.
  26. Product of Corning Glass Works, Corning, N.Y. 14831.
  27. J. H. Kelly, D. L. Smith, J.-C. Lee, S. D. Jacobs, M. J. Shoup, D. J. Smith, “Improved active mirror geometry Cr:Nd:GSGG amplifier,” in Conference on Lasers and Electro-Optics, Vol. 7 of 1988 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1988), p. 380.
  28. W. M. Kays, M. E. Crawford, Convective Heat and Mass Transfer, 2nd ed. (McGraw-Hill, New York, 1980), p. 245.
  29. F. P. Incropera, D. P. Dewitt, Fundamentals of Heat and Mass Transfer (Wiley, New York, 1985), p. 429.
  30. J. M. Eggleston, M. J. Kushner, “Stimulated Brillouin scattering parasitics in large optical windows,” Opt. Lett. 12, 410–412 (1987). [CrossRef] [PubMed]
  31. J. F. Reintjes, “Stimulated Raman and Brillouin scattering,” in CRC Handbook of Laser Science and Technology, Supplement 2: Optical Materials, M. J. Weber, ed. (CRC Press, Boca Raton, Fl., 1995), Sec. 8, p. 358, Table 8.3.7.
  32. These numbers were taken from Ref. 29 and corrected by the factor cos(π/4) to obtain the transverse gain.
  33. W. Kaiser, M. Maier, “Stimulated Rayleigh, Brillouin and Raman spectroscopy,” in Laser Handbook, F. T. Arecchi, E. O. Schulz-Dubois, eds. (North-Holland, Amsterdam, 1972), Vol. 2, pp. 1077–1150.
  34. J. M. Eggleston, T. J. Kane, J. Unternahrer, R. L. Byer, “Slab-geometry Nd:glass laser performance studies,” Opt. Lett. 7, 405–407 (1982). [CrossRef] [PubMed]
  35. Product of General Electric Company, Silicon Products Division, Naperville, Ill. 60540.
  36. G. J. DeSalvo, J. A. Swanson, “ANSYS engineering analysis system user’s manual,” Swanson Analysis Systems, Inc. (1June1985). (ansys is a registered trademark of Swanson Analysis Systems, Inc., Johnson Road, Houston, Pa. 15342.)
  37. Product of United Detector Technologies, 12525 Chadron Avenue, Hawthorne, Calif. 90250.
  38. Product of Amoco Laser Company, 1251 Frontenac Road, Naperville, Ill. 60540.
  39. Product of Schott Technologies, Inc., 400 York Avenue, Duryea, Pa. 18462.
  40. M. Takeda, H. Ina, S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156–160 (1982). [CrossRef]
  41. “High-power laser interferometry,” Laboratory for Laser Energetics (LLE) Review 31, available as NTIS document DOE/DP/40200-47 (National Technical Information Service, Springfield, Va., 1987), pp. 114–123.
  42. R. S. Craxton, “High efficiency frequency tripling schemes for high power Nd:glass lasers,” IEEE J. Quantum Electron. QE-17, 1771–1782 (1981). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited