OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 36, Iss. 24 — Aug. 20, 1997
  • pp: 5996–6004

Reciprocal path-scattering effects for a ground-based, monostatic laser radar tracking a space target through turbulence

Robert A. Murphy and Ronald L. Phillips  »View Author Affiliations


Applied Optics, Vol. 36, Issue 24, pp. 5996-6004 (1997)
http://dx.doi.org/10.1364/AO.36.005996


View Full Text Article

Enhanced HTML    Acrobat PDF (372 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A phenomenological model is developed for the strength and spatial width of the coherent intensity peak of backscatter produced by reciprocal path scattering through atmospheric turbulence. The model is applied to a ground-based, monostatic laser radar tracking a space target under the condition of optical atmospheric turbulence saturation.

© 1997 Optical Society of America

History
Original Manuscript: May 31, 1996
Revised Manuscript: January 23, 1997
Published: August 20, 1997

Citation
Robert A. Murphy and Ronald L. Phillips, "Reciprocal path-scattering effects for a ground-based, monostatic laser radar tracking a space target through turbulence," Appl. Opt. 36, 5996-6004 (1997)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-36-24-5996


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. C. Andrews, W. B. Miller, J. C. Ricklin, “Spatial coherence of a Gaussian-beam wave in weak and strong optical turbulence,” J. Opt. Soc. Am. A 11, 1653–1660 (1994). [CrossRef]
  2. M. S. Belen’kii, V. L. Mironov, “Phase fluctuations when focusing light in a turbulent atmosphere,” Radiophys. Quantum Electron. 12, 1096–1101 (1983). [CrossRef]
  3. M. S. Belen’kii, V. L. Mironov, “Mean diffracted rays of an optical beam in a turbulent medium,” J. Opt. Soc. Am. 70, 159–163 (1980). [CrossRef]
  4. J. W. Goodman, Statistical Optics (Wiley-Interscience, New York, 1985), pp. 128 and 361–464.
  5. V. A. Banakh, V. L. Mironov, Lidar in a Turbulent Atmosphere, V. E. Zuev, ed. (Artech, Boston, Mass., 1987), pp. 25–96.
  6. Y. N. Barabanenkov, Y. A. Kravtsov, V. D. Ozrin, A. I. Saichev, “Enhanced backscattering in optics,” in Progress in Optics XXIX, E. Wolf, ed. (North-Holland, Amsterdam, 1991), Vol. 29, pp. 65–197. [CrossRef]
  7. L. C. Andrews, R. L. Phillips, “Optical scintillations and fade statistics for a satellite communication system,” Appl. Opt. 34, 7742–7751 (1995). [CrossRef] [PubMed]
  8. W. B. Miller, J. C. Ricklin, L. C. Andrews, “Effects of refractive index spectral model on the irradiance variance of a Gaussian beam,” J. Opt. Soc. Am. A 11, 2719–2726 (1994). [CrossRef]
  9. W. B. Miller, J. C. Ricklin, L. C. Andrews, “Log-amplitude variance and wave structure function: a new perspective for Gaussian beams,” J. Opt. Soc. Am. A 10, 661–672 (1993). [CrossRef]
  10. M. S. Belen’kii, “Effect of atmospheric turbulence on heterodyne lidar performance,” Appl. Opt. 32, 5368–5372 (1993). [CrossRef] [PubMed]
  11. J. E. Harvey, A. Kotha, “Sparse array configurations yielding uniform MTF’s in reciprocal path imaging applications,” Opt. Commun. 106, 178–182 (1994). [CrossRef]
  12. J. C. Dainty, T. Mavroidis, C. J. Solomon, “Double passage imaging through turbulence,” in Propagation Engineering: Fourth in a Series, L. R. Bissonnette, W. B. Miller, eds., Proc. SPIE1487, 2–9, (1991).
  13. T. Mavroidis, J. C. Dainty, M. J. Northcott, “Imaging of coherently illuminated objects through turbulence: plane-wave illumination,” J. Opt. Soc. Am. A 7, 348–355 (1990). [CrossRef]
  14. V. I. Tatarskii, Wave Propagation in a Turbulent Medium (McGraw–Hill, New York, 1961).
  15. L. C. Andrews, W. B. Miller, J. C. Ricklin, “Geometrical representation of Gaussian beams propagating through complex paraxial optical systems,” Appl. Opt. 32, 5918–5929 (1993). [CrossRef] [PubMed]
  16. R. E. Hufnagel, “Atmospheric turbulence,” in The Infrared Handbook, W. L. Wolfe, G. J. Zissis, eds. (Infrared Information and Analysis Center, Environmental Research Institute of Michigan, Ann Arbor, Mich., 1989), pp. 6.1–6.20.
  17. V. A. Banakh, Institute of Atmospheric Optics, Russian Academy of Sciences, Tomsk 634055, Russia (personal communication, 1994).
  18. M. S. Belen’kii, “Diffraction of optical radiation by a reflecting disk in a turbulent atmosphere,” Kvantovaya Elektron. (Moscow) N5, 38–45 (1972).
  19. A. S. Gurvich, S. S. Kashkarov, “Amplification of scattering in a turbulent medium,” Izv. Vyssh. Uchebn. Zaved. Radiofiz. 20, 794–796 (1977).
  20. V. I. Tatarskii, “Some new aspects in the problem of waves and turbulence,” Radio Sci. 22, 859–865 (1987). [CrossRef]
  21. Y. A. Kravtsov, A. I. Saichev, “Effects of double passage of waves in randomly inhomogeneous media,” Sov. Phys. Usp. 25, 494–508 (1982). [CrossRef]
  22. J. H. Churnside, J. J. Wilson, “Enhanced backscatter of a reflected beam in atmospheric turbulence,” Appl. Opt. 32, 265–2655 (1993). [CrossRef]
  23. E. Jakeman, J. P. Frank, G. J. Balmer, “The effect of enhanced backscattering on target detection,” in Proceedings of the Agard Meeting on Atmospheric Propagation Effects Through Natural and Man-Made Obscurants for Visible to Millimeter-Wave Propagation (Mallovea, Italy, 1993).
  24. P. R. Tapster, A. R. Weeks, E. Jakeman, “Observation of backscattering enhancement through an atmospheric phase screen,” J. Opt. Soc. Am. A 6, 517–522 (1989). [CrossRef]
  25. B. S. Agrovskii, A. N. Bogaturov, A. S. Gurvich, S. V. Kireev, V. A. Myakinin, “Enhanced backscattering from a plane mirror viewed through a turbulent phase screen,” J. Opt. Soc. Am. A 8, 1142–1147 (1991). [CrossRef]
  26. Y. A. Kravtsov, A. I. Saichev, “Properties of coherent waves reflected in a turbulent medium,” J. Opt. Soc. Am. A 2, 2100–2105 (1985). [CrossRef]
  27. V. U. Zavorotnyi, V. I. Tatarskii, “Intensification of backscattering of waves by a body located near the irregular boundary of two media,” Sov. Phys. Dokl. 27, 566–567 (1982).
  28. Y. A. Kravtsov, A. I. Saichev, “Effects of partial wave-front reversal during the reflection of waves in randomly inhomogeneous media,” Sov. Phys. JETP 56, 291–294 (1982).
  29. J. F. Holmes, “Enhancement of backscattered intensity for a bistatic lidar operating in atmospheric turbulence,” Appl. Opt. 30, 2643–2646 (1991). [CrossRef] [PubMed]
  30. A. G. Vinogradov, Y. A. Kravtsov, V. I. Tatarskii, “Backscatter amplification effect for bodies located in a medium with random inhomogeneities,” Izv. Vyssh. Uchebn. Zaved. Radiofiz. 16, 1064–1090 (1973).
  31. The curve for K including instrument response function in Fig. 2 is reprinted, with permission, from Fig. 2.2 of Ref. 6.
  32. A. E. Siegman, Lasers (University Science Books, Mill Valley, Calif., 1986), pp. 80–115 and 665–667.
  33. A. V. Jelalian, Laser Radar Systems (Artech, Boston, Mass., 1992), pp. 3–10.
  34. L. G. Shirley, E. D. Ariel, G. R. Hallerman, H. C. Payson, J. R. Vivilecchia, “Advanced techniques for target discrimination using laser speckle,” Lincoln Lab. J. 5, 380–391 (1992).
  35. J. C. Stover, Optical Scattering: Measurement and Analysis (McGraw–Hill, New York, 1990), pp. 23–44 and 157–159.
  36. C. G. Bachman, Laser Radar Systems and Techniques (Artech, Dedham, Mass., 1979), pp. 9–40.
  37. J. W. Goodman, Introduction to Fourier Optics (McGraw–Hill, San Francisco, Calif., 1968), pp. 30–65.
  38. R. A. Murphy, “Scattering from Rough Surfaces and Atmospheric Turbulence in Monostatic Laser Radar Systems,” Ph.D. dissertation (University of Central Florida, Orlando, Florida, 1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited