OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 36, Iss. 25 — Sep. 1, 1997
  • pp: 6231–6241

Modified Fourier transform method for interferogram fringe pattern analysis

J. B. Liu and P. D. Ronney  »View Author Affiliations


Applied Optics, Vol. 36, Issue 25, pp. 6231-6241 (1997)
http://dx.doi.org/10.1364/AO.36.006231


View Full Text Article

Enhanced HTML    Acrobat PDF (572 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A modified Fourier transform method for interferogram fringe pattern analysis is proposed. While it retains most of the advantages of the Fourier transform method, the new method overcomes some drawbacks of the previous method. It eliminates the assumptions of slowly varying phase variation in the test section and the constant spatial carrier frequency. It also extends the frequency bandwidth and avoids phase distortion caused by discreteness of the sampling frequency. Both numerical simulation and experimental examination are performed to evaluate the performance of the method.

© 1997 Optical Society of America

History
Original Manuscript: August 23, 1996
Revised Manuscript: December 9, 1996
Published: September 1, 1997

Citation
J. B. Liu and P. D. Ronney, "Modified Fourier transform method for interferogram fringe pattern analysis," Appl. Opt. 36, 6231-6241 (1997)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-36-25-6231


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Malacara, “Optical testing,” in Handbook of Optics, M. Bass, E. W. Van Stryland, D. R. Williams, W. L. Wolfe, eds. (McGraw–Hill, New York, 1995), Chap. 3.
  2. M. Takeda, I. Hideki, S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156–160 (1982). [CrossRef]
  3. C. Roddier, F. Roddier, “Interferogram analysis using Fourier transform techniques,” Appl. Opt. 26, 1668–1673 (1987). [CrossRef] [PubMed]
  4. C. Roddier, “Enregistrement holographique d’images astronomiques degradees par la turbulence atmospherique,” (1979).
  5. F. Roddier, C. Roddier, “Imaging with a multi-mirror telescope,” in Proceedings of the ESO Conference on Optical Telescopes of the Future, F. Pacini, W. Richter, R. N. Wilson, eds. (CERN for the European Southern Observatory, Geneva, 1978).
  6. C. Roddier, “Rotation shearing interferometry,” in Proceedings of the IAU Colloquium 50 on High Angular Resolution Stellar Interferometry, J. Davis, W. J. Tango, eds. (Chatterton Astronomy Dept., U. Sydney, Australia, 1979), p. 32.
  7. C. Roddier, F. Roddier, “High angular resolution observation of Alpha Orionis with a rotation shearing interferometer,” Astrophys. J. 270, L23–L26 (1983). [CrossRef]
  8. F. Roddier, C. Roddier, “An image reconstruction of Alpha Orionis,” Astrophy. J. 295, L21–L23 (1985). [CrossRef]
  9. K. A. Nugent, “Interferogram analysis using an accurate fully automatic algorithm,” Appl. Opt. 24, 3101–3105 (1985). [CrossRef] [PubMed]
  10. W. W. Macy, “Two-dimensional fringe-pattern analysis,” Appl. Opt. 22, 3898–3901 (1983). [CrossRef] [PubMed]
  11. K. H. Womack, “Frequency domain description of interferogram analysis,” Opt. Eng. 23, 396–400 (1984). [CrossRef]
  12. M. Kujawinska, “Spatial phase measurement methods,” in Interferogram Analysis, Digital Fringe Pattern Measurement Techniques, D. W. Robinson, G. D. Reid, eds. (Institute of Physics, Bristol, 1993), pp. 141–193.
  13. M. Kujawinska, J. Wojciak, “Spatial phase-shifting techniques of fringe pattern analysis in photomechanics,” in Moire Techniques, Holographic Interferometry, Optical NDT and Applications to Fluid Mechanics, Proc. SPIE1554B, 503–513 (1991).
  14. M. Pirga, M. Kujawinska, “Two directional spatial-carrier phase-shifting method for analysis of crossed and closed fringe patterns,” Opt. Eng. 34, 2459–2466 (1995). [CrossRef]
  15. J. Li, X. Y. Su, L. R. Guo, “Improved Fourier transform profilometry for the automatic measurement of three-dimensional object shapes,” Opt. Eng. 29, 1439–1444 (1990). [CrossRef]
  16. F. J. Weinberg, Optics of Flames (Butterworths, London, 1963), Chap. 4, pp. 116–149.
  17. S. M. Pandit, N. Jordache, “Data-dependent-systems and Fourier-transform methods for single-interferogram analysis,” Appl. Opt. 34, 5945–5951 (1995). [CrossRef] [PubMed]
  18. J. Schmit, K. Creath, M. Kujawinska, “Spatial and temporal phase-measurement techniques: a comparison of major error sources in one dimension,” in Interferometry: Techniques and Analysis, G. M. Brown, M. Kujawinska, O. Y. Kwon, G. T. Reid, eds., Proc. SPIE1755, 202–211 (1992).
  19. M. P. Rimmer, “Methods for evaluating lateral shearing interferograms,” Appl. Opt. 13, 623–629 (1974). [CrossRef] [PubMed]
  20. D. J. Bone, H. A. Bachor, R. J. Sandeman, “Fringe-pattern analysis using a 2-D Fourier transform,” Appl. Opt. 25, 1653–1660 (1986). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited