OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 36, Iss. 25 — Sep. 1, 1997
  • pp: 6473–6479

Accurate interferometric retardance measurements

Kent B. Rochford and C. M. Wang  »View Author Affiliations

Applied Optics, Vol. 36, Issue 25, pp. 6473-6479 (1997)

View Full Text Article

Enhanced HTML    Acrobat PDF (256 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A two-polarization Michelson interferometer with a low-retardance beam splitter and digital signal processing is used to measure the retardance of optical devices. Error analysis of the improved optical system and data processing shows that the measurement has an uncertainty of 0.039° for measurements of nominally 90° retarders. Retardance variations arising from coherent reflections in the retarder used for intercomparison add an uncertainty of from 0.005° to 0.03°, increasing the combined measurement uncertainty to as much as 0.049°.

© 1997 Optical Society of America

Original Manuscript: October 8, 1996
Revised Manuscript: February 5, 1997
Published: September 1, 1997

Kent B. Rochford and C. M. Wang, "Accurate interferometric retardance measurements," Appl. Opt. 36, 6473-6479 (1997)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. B. Rochford, P. A. Williams, A. H. Rose, I. G. Clarke, P. D. Hale, G. W. Day, “Standard polarization components: progress toward an optical retardance standard,” in Polarization Analysis and Measurement II, D. H. Goldstein, D. B. Chenault, eds., Proc. SPIE2265, 2–8 (1994). [CrossRef]
  2. K. B. Rochford, A. H. Rose, P. A. Williams, C. M. Wang, I. G. Clarke, P. D. Hale, G. W. Day, “Design and performance of a stable linear retarder,” Appl. Opt. 36, 6458–6465 (1997). [CrossRef]
  3. H. F. Hazebroek, A. A. Holscher, “Interferometric ellipsometry,” J. Phys. E 6, 822–826 (1973). [CrossRef]
  4. H. F. Hazebroek, W. M. Visser, “Automated laser interferometric ellipsometry and precision reflectometry,” J. Phys. E 16, 654–661 (1983). [CrossRef]
  5. D. Gabor, “Theory of communication. Part I. The analysis of information,” J. Inst. Elec. Eng. 93, 429–441 (1946).
  6. R. N. Bracewell, The Fourier Transform and Its Applications (McGraw–Hill, New York, 1986), pp. 267–271.
  7. M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1980), Vol. 6, pp. 619.
  8. R. A. Paquin, “Properties of metals,” in Handbook of Optics, M. Bass, E. W. Van Stryland, D. R. Williams, W. L. Wolfe, eds. (McGraw-Hill, New York, 1995), Vol. 2 p. 35.22.
  9. A. L. Fymat, “Jones’ matrix representation of optical instruments. I: Beam splitters,” Appl. Opt. 10, 2499–2505 (1971). [CrossRef] [PubMed]
  10. F. J. Harris, “On the use of windows for harmonic analysis with discrete Fourier transform,” Proc. IEEE 6, 51–83 (1978). [CrossRef]
  11. B. N. Taylor, C. E. Kuyatt, Guidelines for evaluating and expressing the uncertainty of NIST measurementsNational Institute of Standards Technology Technical Note 1297, 1993 (U.S. Government Printing Office, Washington D.C.), pp. 2–5.
  12. P. A. Williams, A. H. Rose, C. M. Wang, “Rotating-polarizer polarimeter for accurate retardance measurement,” Appl. Opt. 36, 6466–6472 (1997). [CrossRef]
  13. K. B. Rochford, C. M. Wang, “Uncertainty in null polarimeter measurements,” , 1996 (National Institute of Standards and Technology, Gaithersburg, Md.).
  14. E. Hecht, A. Zajak, Optics (Addison–Wesley, Reading, Mass, 1974), pp. 301–305.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited