OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 36, Iss. 27 — Sep. 20, 1997
  • pp: 6729–6738

Corrected and calibrated I2 absorption model at frequency-doubled Nd:YAG laser wavelengths

Joseph N. Forkey, Walter R. Lempert, and Richard B. Miles  »View Author Affiliations

Applied Optics, Vol. 36, Issue 27, pp. 6729-6738 (1997)

View Full Text Article

Enhanced HTML    Acrobat PDF (351 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a computer model for accurately predicting absorption profiles for molecular iodine cells over the tuning range of frequency-doubled Nd:YAG lasers. The model is compared with experimental data for a number of different cell conditions. This model is intended for use in the design and optimization of absorption filters and for data analysis in applications in which the accuracy of the measurement is related closely to the accuracy with which the filter profile is known.

© 1997 Optical Society of America

Original Manuscript: November 13, 1996
Revised Manuscript: May 30, 1997
Published: September 20, 1997

Joseph N. Forkey, Walter R. Lempert, and Richard B. Miles, "Corrected and calibrated I2 absorption model at frequency-doubled Nd:YAG laser wavelengths," Appl. Opt. 36, 6729-6738 (1997)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. B. Miles, W. R. Lempert, “Two-dimensional measurement of density, velocity, and temperature in turbulent high speed flows by UV Rayleigh scattering,” Appl. Phys. B 51, 1–7 (1990). [CrossRef]
  2. J. N. Forkey, W. R. Lempert, R. B. Miles, “Demonstration and characterization of filtered Rayleigh scattering for planar velocity measurements,” AIAA J. 34, 442–448 (1996). [CrossRef]
  3. G. S. Elliott, M. Samimy, S. A. Arnette, “A molecular filter based velocimetry technique for high speed flows,” Exp. Fluids 18, 107–118 (1994).
  4. J. A. Shirley, M. Winter, “Air-mass flux measurement system using Doppler-shifted filtered Rayleigh scattering,” in 31st Aerospace Sciences Meeting (American Institute of Aeronautics and Astronautics, Inc., New York, 1993), paper 93-0513.
  5. H. Komine, S. J. Brosnan, A. B. Litton, E. A. Stappaerts, “Real-time, Doppler global velocimetry,” in 29th Aerospace Sciences Meeting (American Institute of Aeronautics and Astronautics, Inc., New York, 1991), paper 91-0337.
  6. D. Hoffman, K.-U. Münch, A. Leipertz, “Two-dimensional temperature determination in sooting flames by filtered Rayleigh scattering,” Opt. Lett. 21, 525–527 (1996). [CrossRef] [PubMed]
  7. P. Piironen, E. W. Eloranta, “Demonstration of a high-spectral-resolution lidar based on an iodine absorption filter,” Opt. Lett. 19, 234–236 (1994). [CrossRef] [PubMed]
  8. G. E. Devlin, J. L. Davis, L. Chase, S. Geschwind, “Absorption of unshifted scattered light by a molecular I2 filter in Brillouin and Raman scattering,” Appl. Phys. Lett. 19, 138–141 (1971). [CrossRef]
  9. A. Arie, R. L. Byer, “Frequency stabilization of the 1064-nm Nd:YAG lasers to Doppler-broadened lines of iodine,” Appl. Opt. 32, 7382–7386 (1993). [CrossRef] [PubMed]
  10. J. A. Harrison, M. Zahedi, J. W. Nibler, “Use of seeded Nd:YAG lasers for high-resolution spectroscopy,” Opt. Lett. 18, 149–151 (1993). [CrossRef] [PubMed]
  11. fortran source code available over the internet. Contact Joseph N. Forkey (joe@hepcat.princeton.edu) or Richard B. Miles (miles@hepcat.princeton.edu) for details.
  12. J. Tellinghuisen, “Transition strengths in the visible-infrared absorption spectrum of I2,” J. Chem. Phys. 76, 4736–4744 (1982). [CrossRef]
  13. S. Gerstenkorn, P. Luc, Atlas du Spectre d’Absorption de la Molecule d’Iode, 14800–20000 cm-1, complement (Laboratoire Aime-Cotton, Centre National de la Recherche Scientifique II 91405 Orsay, France, 1986).
  14. S. Gerstenkorn, P. Luc, “Description of the absorption spectrum of iodine recorded by means of Fourier transform spectroscopy: the (B-X) system,” J. Phys. (Paris) 46, 867–881 (1985). [CrossRef]
  15. M. Kroll, K. K. Innes, “Molecular electronic spectroscopy by Fabry-Perot interferometry. Effect of nuclear quadrupole interactions on the line widths of the B3Π0+-X1Σg+ transition of the I2 molecule,” J. Mol. Spectrosc. 36, 295–309 (1970). [CrossRef]
  16. L. A. Hackel, K. H. Casleton, S. G. Kukolich, S. Ezekiel, “Observation of magnetic octupole and scalar spin-spin interactions in I2 using laser spectroscopy,” Phys. Rev. Lett. 35, 568–571 (1975). [CrossRef]
  17. M. D. Levenson, A. L. Schawlow, “Hyperfine interactions in molecular iodine,” Phys. Rev. A 6, 6–20 (1972). [CrossRef]
  18. M. Gläser, “Identification of hyperfine structure components of the iodine molecule at 640 nm wavelength,” Opt. Commun. 54, 335–342 (1985). [CrossRef]
  19. J. I. Steinfeld, Molecules and Radiation: An Introduction to Modern Molecular Spectroscopy (MIT, Cambridge, Mass., 1981).
  20. J. Tellinghuisen, “Intensity factors for the I2 B-X band system,” J. Quan. Spectrosc. Radiat. Transfer 19, 149–161 (1978). [CrossRef]
  21. S. Gerstenkorn, P. Luc, Identification des Transitions du Systemes, (B-X) de la Molecule d’Iode et Facteurs de Franck-Condon, 14000–15600 cm-1 (Laboratoire Aime-Cotton, Centre National de la Recherche Scientifique II 91405 Orsay, France, 1986).
  22. L. Brewer, J. Tellinghuisen, “Quantum yield for unimolecular dissociation of I2 in visible absorption,” J. Chem. Phys. 56, 3929–3938 (1972). [CrossRef]
  23. B. Hiller, R. K. Hanson, “Properties of the iodine molecule relevant to laser-induced fluorescence experiments in gas flows,” Exp. Fluids 10, 1–11 (1990). [CrossRef]
  24. D. Fletcher, NASA Ames Research Center, MS 229/1, Moffett Field, Calif. 94035-1000 (personal communication, 1991).
  25. J. N. Forkey, “Development and demonstration of filtered Rayleigh scattering—a laser based flow diagnostic for planar measurement of velocity, temperature and pressure,” Ph.D. dissertation (Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, N.J., 1996).
  26. M. Frenkel, N. M. Gadalla, K. N. Marsh, R. C. Wilhoit, eds., Thermodynamics Research Center, (TRC) Thermodynamic Tables—Non-Hydrocarbons (Thermodynamics Research Center, The Texas Engineering Experiment Station, The Texas A&M University System, College Station, Texas, 1975), p. ka-190.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited