OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 36, Iss. 27 — Sep. 20, 1997
  • pp: 6913–6920

Coherent imaging with two-dimensional focal-plane arrays: design and applications

Marc L. Simpson, Chuck A. Bennett, Mike S. Emery, Don P. Hutchinson, Gordon H. Miller, Roger K. Richards, and David N. Sitter  »View Author Affiliations

Applied Optics, Vol. 36, Issue 27, pp. 6913-6920 (1997)

View Full Text Article

Enhanced HTML    Acrobat PDF (973 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Scanned, single-channel optical heterodyne detection has been used in a variety of lidar applications from ranging and velocity measurements to differential absorption spectroscopy. We describe the design of a coherent camera system that is based on a two-dimensional staring array of heterodyne receivers for coherent imaging applications. Experimental results with a single HgCdTe detector translated in the image plane to form a synthetic two-dimensional array demonstrate the ability to obtain passive heterodyne images of chemical vapor plumes that are invisible to normal video infrared cameras. We describe active heterodyne imaging experiments with use of focal-plane arrays that yield hard-body Doppler lidar images and also demonstrate spatial averaging to reduce speckle effects in static coherent images.

© 1997 Optical Society of America

Original Manuscript: November 22, 1996
Revised Manuscript: May 19, 1997
Published: September 20, 1997

Marc L. Simpson, Chuck A. Bennett, Mike S. Emery, Don P. Hutchinson, Gordon H. Miller, Roger K. Richards, and David N. Sitter, "Coherent imaging with two-dimensional focal-plane arrays: design and applications," Appl. Opt. 36, 6913-6920 (1997)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. C. Teich, “Infrared heterodyne detection,” Proc. IEEE 56, 37–46 (1968). [CrossRef]
  2. C. B. Carlisle, J. E. van der Lann, L. W. Carr, P. Adam, J. Chiaroni, “CO2 laser-based differential absorption lidar system for range-resolved and long-range detection of chemical vapor plumes,” Appl. Opt. 34, 6187–6200 (1995). [CrossRef] [PubMed]
  3. R. Targ, J. G. Hawley, B. C. Steakley, L. L. Ames, “Airborne lidar wind detection at 2 µm,” in Coherent Laser Radar: Technology and Applications, Vol. 19 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), pp. 178–181.
  4. K. I. Schultz, S. Fisher, “Ground-based laser radar measurements of satellite vibrations,” Appl. Opt. 31, 7690–7695 (1992). [CrossRef] [PubMed]
  5. J. Y. Wang, B. J. Bartholomew, M. L. Streiff, E. F. Starr, “Imaging CO2 laser radar field tests,” Appl. Opt. 23, 2565–2571 (1984). [CrossRef]
  6. A. Rogalski, “New trends in infrared detector technology,” Infrared Phys. Technol. 35, 1–21 (1994). [CrossRef]
  7. H. C. Liu, G. E. Jenkins, E. R. Brown, K. A. McIntosh, K. B. Nichols, M. J. Manfra, “Optical heterodyne detection and microwave rectification up to 26 GHz using quantum well infrared photodetectors,” IEEE Electron. Device Lett. 16, 253–255 (1995). [CrossRef]
  8. B. Willen, U. Westergren, H. Asonen, “High-gain high speed InP/InGaAs double-heterojunction bipolar transistors with a step-graded base-collector heterojunction,” IEEE Electron. Device Lett. 16, 479–481 (1995). [CrossRef]
  9. M.-C. Ho, R. A. Johnson, W. J. Ho, M. F. Chang, P. M. Asbeck, “High-performance low-base-collector capacitance AlGaAs/GaAs heterojunction bipolar transistors fabricated by deep ion implantation,” IEEE Electron. Device Lett. 16, 512–514 (1995). [CrossRef]
  10. W. B. Veldkamp, “Holographic local oscillator beam multiplexing for array heterodyne detection,” Appl. Opt. 22, 891–900 (1983). [CrossRef]
  11. W. B. Veldkamp, E. J. Van Allen, “Binary holographic LO beam multiplexer for IR imaging detector arrays,” Appl. Opt. 22, 1497–1506 (1983). [CrossRef] [PubMed]
  12. M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1964).
  13. A. E. Siegman, “The antenna properties of optical heterodyne receivers,” Appl. Opt. 5, 1588–1594 (1966). [CrossRef] [PubMed]
  14. E. Holzhauser, J. H. Massig, “An analysis of optical mixing in plasma scattering experiments,” Plasma Phys. 20, 867–877 (1978). [CrossRef]
  15. B. J. Rye, “Antenna parameters for incoherent backscatter heterodyne lidar,” Appl. Opt. 18, 1390–1398 (1979). [CrossRef] [PubMed]
  16. H. Kogelnik, T. Li, “Laser beams and resonators,” Appl. Opt. 5, 1550–1566 (1966). [CrossRef] [PubMed]
  17. A. T. Forrestor, “On coherence properties of light waves,” Am. J. Phys. 24, 192–196 (1956). [CrossRef]
  18. W. Martienssen, E. Spiller, “Coherence and fluctuations in light beams,” Am. J. Phys. 32, 919–926 (1964). [CrossRef]
  19. A. B. Haner, N. R. Isenor, “Intensity correlations from pseudothermal light sources,” Am. J. Phys. 38, 748–750 (1970). [CrossRef]
  20. F. Zernike, “The concept of degree of coherence and its application to optical problems,” Physica 8, 785–795 (1938). [CrossRef]
  21. J. F. Kusters, B. J. Rye, A. C. Walker, “Spatial weighting in laboratory light scattering experiments,” Appl. Opt. 28, 657–664 (1989). [CrossRef] [PubMed]
  22. J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, New York, 1975), Chap. 2, pp. 9–75.
  23. C. A. Bennett, R. K. Richards, D. P. Hutchinson, “Absolute broadband calibration procedure for infrared heterodyne receivers,” Appl. Opt. 27, 3324–3325 (1988). [CrossRef] [PubMed]
  24. K. P. Chan, D. Killinger, “Enhanced detection of atmospheric-turbulence-distorted 1-µm coherent lidar returns using a two-dimensional heterodyne detector array,” Opt. Lett. 16, 1219–1221 (1991). [CrossRef] [PubMed]
  25. R. Dädandliker, M. Geiser, C. Giunti, S. Zatti, G. Margheri, “Improvement of speckle statistics in double-wavelength superheterodyne interferometry,” Appl. Opt. 34, 7197–7201 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited