OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 36, Iss. 27 — Sep. 20, 1997
  • pp: 6962–6967

In situ measurements of Raman scattering in clear ocean water

Chuanmin Hu and Kenneth J. Voss  »View Author Affiliations

Applied Optics, Vol. 36, Issue 27, pp. 6962-6967 (1997)

View Full Text Article

Enhanced HTML    Acrobat PDF (468 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have further developed and improved the prototype oceanic Fraunhofer line discriminator by using a well-protected fiber-optic–wire cable and in-water electronic housing. We conducted a series of in situ measurements in clear ocean water in the Florida Straits. By comparing the reduced data with the Monte Carlo simulation results, we verify the Raman scattering coefficient Br with an excitation wavelength at 488 nm to be 2.6 × 10-4m-1 [Appl. Opt. 29, 71–84 (1990)], as opposed to 14.4 × 10-4 m-1 [Appl. Opt. 14, 2116–2120 (1975)]. The wavelength dependence of the Raman scattering coefficient is found to have an insignificant effect on the in-water light field. We also discuss factors that lead to errors. This study can be used as a basis for inelastic light scattering in the radiative transfer theory and will allow other inelastic light, e.g., fluorescence, to be detected with in situ measurements.

© 1997 Optical Society of America

Original Manuscript: February 5, 1997
Revised Manuscript: May 12, 1997
Published: September 20, 1997

Chuanmin Hu and Kenneth J. Voss, "In situ measurements of Raman scattering in clear ocean water," Appl. Opt. 36, 6962-6967 (1997)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Anderson, The Raman Effect: Principles, (Dekker, New York, 1971), Vol. 1.
  2. R. B. Slusher, V. E. Derr, “Temperature dependence and cross sections of some Stokes and anti-Stokes Raman lines in ice Ih,” Appl. Opt. 14, 2116–2120 (1975). [CrossRef] [PubMed]
  3. B. R. Marshall, R. C. Smith, “Raman scattering and in-water ocean optical properties,” Appl. Opt. 29, 71–84 (1990). [CrossRef] [PubMed]
  4. I. I. Kondilenko, P. A. Korotkov, V. A. Klimenko, O. P. Demyanenko, “Transverse cross section of Raman scattering of the v1 vibration of the water molecule in the liquid and gaseous state,” Opt. Spectrosc. (USSR) 43, 384–386 (1977).
  5. N. P. Romanov, V. S. Shuklin, “Raman scattering cross section of liquid water,” Opt. Spectrosc. (USSR) 38, 646–648 (1975).
  6. S. Sugihara, M. Kishino, N. Okami, “Contribution of Raman scattering to upward irradiance in the sea,” J. Oceanogr. Soc. Jpn. 40, 397–404 (1984). [CrossRef]
  7. F. E. Hoge, R. N. Swift, “Airborne simultaneous spectroscopic detection of laser-induced water Raman backscatter and fluorescence from chlorophyll a and other naturally occurring pigments,” Appl. Opt. 20, 3197–3205 (1981). [CrossRef] [PubMed]
  8. R. H. Stavn, A. D. Weidemann, “Optical modeling of clear ocean light fields: Raman scattering effects,” Appl. Opt. 27, 4001–4011 (1988). [CrossRef]
  9. R. H. Stavn, “Raman scattering effects at the shorter visible wavelengths in clear ocean water,” in Ocean Optics X, R. W. Spinrad, ed., Proc. SPIE1302, 94–100 (1990). [CrossRef]
  10. G. W. Kattawar, X. Xu, “Filling in of Fraunhofer lines in the ocean by Raman scattering,” Appl. Opt. 31, 6491–6500 (1992). [CrossRef] [PubMed]
  11. Y. Ge, H. R. Gordon, K. J. Voss, “Simulation of inelastic-scattering contributions to the irradiance field in the ocean: variation in Fraunhofer line depths,” Appl. Opt. 32, 4028–4036 (1993). [CrossRef] [PubMed]
  12. V. I. Haltrin, G. W. Kattawar, “Self-consistant solutions to the equation of transfer with elastic and inelastic scattering in oceanic optics: I. Model,” Appl. Opt. 32, 5356–5367 (1993). [CrossRef] [PubMed]
  13. J. F. Grainger, J. Ring, “Anomalous Fraunhofer line profiles,” Nature (London) 193, 762 (1962). [CrossRef]
  14. J. Noxon, R. Goody, “Noncoherent scattering of skylight,” Izv. Atmos. Ocean. Phys. 1, 163–166 (1965).
  15. F. E. Barmore, “The filling-in of Fraunhofer lines in the day sky,” J. Atmos. Sci. 32, 1489–1493 (1975). [CrossRef]
  16. M. Conde, P. Greet, F. Jacka, “The ring effect in the sodium D2 Fraunhofer line of day skylight,” J. Geophys. Res. 97, 11561–11565 (1992). [CrossRef]
  17. G. E. Stoertz, W. R. Hemphill, “Airborne fluorometer applicable to marine and estuarine studies,” Mar. Technol. Soc. J. 3, 11–26 (1969).
  18. J. A. Plascyk, “The MK II Fraunhofer line discriminator (FLD-II) for airborne and orbital remote sensing of solar-stimulated luminescence,” Opt. Eng. 14, 339–346 (1975). [CrossRef]
  19. M. G. Lovern, M. W. Roberts, S. A. Miller, G. T. Kaye, “Oceanic in situ Fraunhofer line characterizations,” in Ocean Optics XI, G. D. Gilbert, ed., Proc. SPIE1750, 149–160 (1992). [CrossRef]
  20. Y. Ge, K. J. Voss, H. R. Gordon, “Measurement of oceanic inelastic scattering using solar Fraunhofer line,” in Ocean Optics XI, G. D. Gilbert, ed., Proc. SPIE1750, 161–169 (1992). [CrossRef]
  21. C. Hu, K. J. Voss, “Solar-stimulated inelastic light in clear sea water,” in Ocean Optics XIIIS. G. Ackleson, ed., Proc. SPIE2963, 266–271 (1997). [CrossRef]
  22. J. M. Beckers, C. A. Bridges, L. B. Gilliam, “A high resolution spectral atlas of the solar irradiance from 380 to 700 nanometers. Volume II: graphical form,” , Environmental Research Paper 565, (Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1976).
  23. L. Elterman, “UV, visible, and IR attenuation for altitudes to 50 km, 1968,” , Environmental Research Paper 285, (Air Force Cambridge Research Laboratory, Bedford, Mass., 1968).
  24. R. G. Zika, C. A. Moore, C. Farmer, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, Fla. 33149 (personal communication, 1996).
  25. H. R. Gordon, “Radiative transfer in the atmosphere for correction of ocean color remote sensors,” in Ocean Colour: Theory and Applications in a Decade of CZCS Experience, V. Barale, P. M. Schlittenhardt, eds. (ECSC, EEC, EAEC, Brussels, 1993), pp. 33–77.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited