OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 36, Iss. 27 — Sep. 20, 1997
  • pp: 6989–6996

Two-dimensional temperature determination in the exhaust region of a laminar flat-flame burner with linear Raman scattering

Friedrich Rabenstein and Alfred Leipertz  »View Author Affiliations

Applied Optics, Vol. 36, Issue 27, pp. 6989-6996 (1997)

View Full Text Article

Enhanced HTML    Acrobat PDF (344 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



For planar temperature measurements in combusting flows, the well-established laser Raman technique has been further developed to provide two-dimensional local resolution. After excitation with a frequency-doubled Nd:YAG laser, the anti-Stokes and the Stokes Raman signals of the vibrational Q branch of molecular N2 were detected at 473.3 and 607.3 nm, respectively. From the ratio of the two images, two-dimensional temperature distributions have been obtained by application of an analytical function, which was determined from theoretically calculated Raman spectra. Time-averaged measurements have been performed in the exhaust region of an atmospheric-pressure laminar CH4/air flat-flame burner for different equivalence ratios. The accuracy and precision of the results are discussed in combination with the prospects for time-resolved single-pulse measurements.

© 1997 Optical Society of America

Original Manuscript: January 29, 1996
Revised Manuscript: December 9, 1996
Published: September 20, 1997

Friedrich Rabenstein and Alfred Leipertz, "Two-dimensional temperature determination in the exhaust region of a laminar flat-flame burner with linear Raman scattering," Appl. Opt. 36, 6989-6996 (1997)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Kampmann, A. Leipertz, K. Döbbeling, J. Haumann, Th. Sattelmayer, “Two-dimensional temperature measurements in a technical combustor using laser Rayleigh scattering,” Appl. Opt. 32, 6167–6172 (1993). [CrossRef] [PubMed]
  2. R. W. Dibble, A. R. Masri, R. W. Bilger, “The spontaneous Raman scattering technique applied to nonpremixed flames of methane,” Combust. Flame 67, 189–206 (1987). [CrossRef]
  3. A. Brockhinke, P. Andresen, K. Kohse-Höinghaus, “Quantitative one-dimensional single-pulse multi-species concentration and temperature measurement in the lift-off region of a turbulent H2/air diffusion flame,” Appl. Phys. B 61, 533–545 (1995). [CrossRef]
  4. M. P. Lee, B. K. McMillin, R. K. Hanson, “Temperature measurements in gases by use of planar laser-induced fluorescence imaging of NO,” Appl. Opt. 32, 5379–5396 (1993). [CrossRef] [PubMed]
  5. J. M. Seitzman, R. K. Hanson, P. A. DeBarber, C. F. Hess, “Application of quantitative two-line OH planar laser-induced fluorescence for temporally resolved planar thermometry in reacting flows,” Appl. Opt. 33, 4000–4012 (1994). [CrossRef] [PubMed]
  6. G. S. Widhopf, S. Lederman, “Species concentration measurements utilizing Raman scattering of a laser beam,” AIAA J. 9, 309–316 (1971). [CrossRef]
  7. M. Lapp, “Flame temperatures from vibrational Raman scattering,” in Laser Raman Gas Diagnostics, M. Lapp, C. M. Penney, eds. (Plenum, New York, 1974), pp. 107–145. [CrossRef]
  8. S. Lederman, “The use of laser Raman diagnostics in flow fields and combustion,” Prog. Energy Combust. Sci. 3, 1–34 (1977). [CrossRef]
  9. A. C. Eckbreth, “Averaging considerations for pulsed, laser Raman signals from turbulent combustion media,” Combust. Flame 31, 231–237 (1978). [CrossRef]
  10. A. C. Eckbreth, P. A. Bonczyk, J. F. Verdieck, “Combustion diagnostics by laser Raman and fluorescence techniques,” Prog. Energy Combust. Sci. 5, 253–322 (1979). [CrossRef]
  11. M. C. Drake, G. M. Rosenblatt, “Rotational Raman scattering from premixed and diffusion flames,” Combust. Flame 33, 179–196 (1978). [CrossRef]
  12. A. Leipertz, M. Fiebig, “Giant pulse laser Raman probe for low gas concentration detection,” Opt. Eng. 20, 599–604 (1981). [CrossRef]
  13. M. C. Drake, M. Lapp, C. M. Penney, S. Warshaw, B. W. Gerhold, “Probability density functions and correlations of temperature and molecular concentrations in turbulent diffusion flames,” AIAA paper 81-0103 (American Institute of Aeronautics and Astronautics, New York, 1981).
  14. J. Haumann, A. Leipertz, “Giant-pulsed laser Raman oxygen measurements in a premixed laminar methane–air flame,” Appl. Opt. 24, 4509–4515 (1985). [CrossRef]
  15. T. S. Cheng, J. A. Wehrmeyer, R. W. Pitz, “Simultaneous temperature and multi-species measurement in a lifted hydrogen diffusion flame by a KrF excimer laser,” AIAA paper 91-0181 (American Institute of Aeronautics and Astronautics, New York, 1991).
  16. J. A. Wehrmeyer, T.-S. Cheng, R. W. Pitz, “Raman scattering measurements in flames using a tunable KrF excimer laser,” Appl. Opt. 31, 1495–1504 (1992). [CrossRef] [PubMed]
  17. S. P. Nandula, T. M. Brown, R. W. Pitz, “Single-pulse, simultaneous multipoint multispecies Raman measurements in turbulent nonpremixed jet flames,” Opt. Lett. 19, 414–416 (1994). [PubMed]
  18. E. P. Hassel, “Ultraviolet Raman-scattering measurements in flames by use of a narrow-band XeCl excimer,” Appl. Opt. 32, 4058–4065 (1993). [CrossRef] [PubMed]
  19. J. A. Wehrmeyer, S. Yeralan, K. S. Tecu, “Linewise Raman-Stokes/anti-Stokes temperature measurements in flames using an unintensified charge-coupled device,” Appl. Phys. B. 62, 21–27 (1996). [CrossRef]
  20. S. Prucker, W. Meier, W. Stricker, “A flat flame burner as calibration source for combustion research: temperatures and species concentrations of premixed H2/air flames,” Rev. Sci. Instrum. 65, 2908–2911 (1994). [CrossRef]
  21. A. Leipertz, M. Fiebig, “Using Raman intensity dependence on laser polarization for low gas concentration measurements with giant pulse lasers,” Appl. Opt. 19, 2272–2274 (1980). [CrossRef] [PubMed]
  22. A. Leipertz, “Temperaturbestimmung in Gasen mittels linearer und nichtlinearer Raman-Prozesse,” Habilitation thesis (Ruhr-Universität Bochum, Bochum, Germany, 1984), pp. 193–194.
  23. G. Grünefeld, V. Beushausen, P. Andresen, W. Hentschel, “Spatially resolved Raman scattering for multi-species and temperature analysis in technically applied combustion systems: spray flame and four-cylinder in-line engine,” Appl. Phys. B 58, 333–342 (1994). [CrossRef]
  24. H. W. Schrötter, H. W. Klöckner, “Raman scattering cross sections in gases and liquids,” in Raman Spectroscopy of Gases and Liquids, A. Weber, ed., Vol. 11 of Springer Series Topics in Current Physics (Springer-Verlag, Berlin, 1979), p. 137.
  25. D. A. Long, Raman Spectroscopy (McGraw-Hill, London, 1977), Chap. 4 , pp. 82–84.
  26. E. P. Hassel, Energie- und Kraftwerkstechnik, TH Darmstadt, 64287 Darmstadt, Germany, (personal communication, 1994).
  27. M. C. Drake, C. Asawaroengchai, G. M. Rosenblatt, “Temperature from rotational and vibrational Raman scattering: effects of vibrational-rotational interactions and other corrections,” in Laser Probes for Combustion Chemistry, D. R. Crosley, ed., ACS Symposium Series (American Chemical Society, Washington, 1980), Vol. 134, p. 235.
  28. A. Lawitzki, I. Plath, W. Stricker, J. Bittner, U. Meier, K. Kohse-HöAdoinghaus, “Laser-induced fluorescence determination of flame temperatures in comparison with CARS measurements,” Appl. Phys. B 50, 513–518 (1990). [CrossRef]
  29. D. Hofmann, Lehrstuhl für Technische Thermodynamik, Universität Erlangen-Nürnberg, 91058 Erlangen, Germany (personal communication, 1996).
  30. I. Namer, R. W. Schefer, “Error estimates for Rayleigh scattering density and temperature measurements in premixed flames,” Exp. Fluids 3, 1–9 (1985). [CrossRef]
  31. J. Jonuscheit, A. Thumann, M. Schenk, T. Seeger, A. Leipertz, “Accuracy and precision of single-pulse one-dimensional vibrational coherent anti-Stokes Raman-scattering temperature measurements,” Appl. Opt. 36, 3253–3260 (1997). [CrossRef] [PubMed]
  32. M. B. Long, P. S. Levin, D. C. Fourguette, “Simultaneous two-dimensional mapping of species concentration and temperature in turbulent flames,” Opt. Lett. 10, 267–269 (1985). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited