OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 36, Iss. 27 — Sep. 20, 1997
  • pp: 7066–7072

Indium tin oxide overlayered waveguides for sensor applications

B. Jonathan Luff, James S. Wilkinson, and Guido Perrone  »View Author Affiliations


Applied Optics, Vol. 36, Issue 27, pp. 7066-7072 (1997)
http://dx.doi.org/10.1364/AO.36.007066


View Full Text Article

Enhanced HTML    Acrobat PDF (256 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The use of indium tin oxide (ITO) thin films as electrodes for integrated optical electrochemical sensor devices is discussed. The effect of various thicknesses of ITO overlayers exhibiting low resistivity and high transparency on potassium ion-exchanged waveguides fabricated in glass substrates is investigated over the wavelength range 500–900 nm. ITO overlayers are formed by reactive thermal evaporation in oxygen, followed by annealing in air to a maximum temperature of 320 °C. With air as the superstrate, losses in the waveguides were found to increase dramatically above 30-nm ITO thickness for TE polarization and above 50-nm thickness for TM. Losses were increased over the whole wavelength range for a superstrate index close to that of water. A one-dimensional, multilayer waveguide model is used in the interpretation of the experimental results.

© 1997 Optical Society of America

History
Original Manuscript: April 5, 1996
Revised Manuscript: October 24, 1996
Published: September 20, 1997

Citation
B. Jonathan Luff, James S. Wilkinson, and Guido Perrone, "Indium tin oxide overlayered waveguides for sensor applications," Appl. Opt. 36, 7066-7072 (1997)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-36-27-7066


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. S. Sethi, “Transducer aspects of biosensors,” Biosensors Bioelectron. 9, 243–263 (1994). [CrossRef]
  2. P. V. Lambeck, “Integrated opto-chemical sensors,” Sensors Actuators B 8, 103–116 (1992). [CrossRef]
  3. J. Ingenhoff, B. Drapp, G. Gauglitz, “Biosensors using integrated optical devices,” Fresenius Z. Anal. Chem. 346, 580–583 (1993). [CrossRef]
  4. K. Itoh, A. Fujishima, “An application of optical waveguides to electrochemistry: construction of optical waveguide electrodes,” J. Phys. Chem. 92, 7043–7045 (1988). [CrossRef]
  5. C. Piraud, E. K. Mwarania, J. Yao, K. O. Dwyer, D. J. Schiffrin, J. S. Wilkinson, “Optoelectrochemical transduction on planar optical waveguides,” J. Lightwave Technol. 10, 693–699 (1992). [CrossRef]
  6. J. Kremeskötter, R. Wilson, D. J. Schiffrin, B. J. Luff, J. S. Wilkinson, “Detection of glucose via electrochemiluminescence in a thin-layer cell with a planar optical waveguide,” Meas. Sci. Technol. 6, 1325–1328 (1995). [CrossRef]
  7. J. Kremeskötter, R. Wilson, D. J. Schiffrin, B. J. Luff, J. S. Wilkinson, “WilsonStudy of luminol electrochemiluminescence with a planar optical waveguide for peroxide sensor application,” in Electrochemical Society Proceedings Vol. 95-1 (Electrochemical Society, 1995), p. 1054.
  8. C. R. Lavers, R. D. Harris, S. Hao, J. S. Wilkinson, K. O. Dwyer, M. Brust, D. J. Schiffrin, “Electrochemically controlled waveguide-coupled surface plasmon sensing,” J. Electroanal. Chem. 387, 11–22 (1995). [CrossRef]
  9. H. Gnewuch, H. Renner, “Mode-independent attenuation in evanescent-field sensors,” Appl. Opt. 34, 1473–1483 (1995). [CrossRef] [PubMed]
  10. W. Huber, R. Barner, Ch. Fattinger, J. Hübscher, H. Koller, F. Müller, D. Schlatter, W. Lukosz, “Direct optical immunosensing (sensitivity and selectivity),” Sensors Actuators B 6, 122–126 (1992). [CrossRef]
  11. A. N. Sloper, J. K. Deacon, M. T. Flanagan, “A planar indium phosphate monomode waveguide evanescent field immunosensor,” Sensors Actuators B 1, 589–591 (1990). [CrossRef]
  12. Y. Zhou, J. V. Magill, R. M. De La Rue, P. J. R. Laybourn, “Evanescent fluorescence immunoassays performed with a disposable ion-exchanged patterned waveguide,” Sensors Actuators B 11, 245–250 (1993). [CrossRef]
  13. R. Wilson, D. J. Schiffrin, “Use of fluorescamine for the spectrophotometric investigation of primary amines on silanized glass and indium tin oxide-coated glass,” Analyst 120, 175–178 (1995). [CrossRef]
  14. L. Ross, “Integrated optical components in substrate glasses,” Glastech. Ber. 62, 285–297 (1989).
  15. E. Marantonio, R. E. Zich, I. Montrosset, “Alternative expression of the dispersion equation in multilayered structures,” IEE Proc. Part J. 137, 357–360 (1990).
  16. H. W. Gnewuch, Optoelectronics Research Centre, University of Southampton, Southampton, UK (personal communication, 1996).
  17. G. L. Yip, J. Albert, “Characterization of planar optical waveguides by K+ ion-exchange in glass.” Opt. Lett. 10, 151–153 (1985). [CrossRef] [PubMed]
  18. M. N. Weiss, R. Srivastava, “Determination of ion-exchanged channel waveguide profile parameters by mode index measurements,” Appl. Opt. 33, 455–458 (1995). [CrossRef]
  19. A. Miliou, H. Zhenguang, H. C. Cheng, R. Srivastava, R. V. Ramaswamy, “Fiber-compatible K+-Na+ ion-exchanged channel waveguides: fabrication and characterization,” IEEE J. Quantum Electron. 25, 1889–1897 (1989). [CrossRef]
  20. P. S. Chung, M. J. Millington, “Post baking characteristics of single-mode and multimode silver/sodium exchanged waveguides,” IEE Proc. Part J 136, (2), 103–107 (1989).
  21. Y. Okamura, K. Kitatani, S. Yamamoto, “Low-voltage driving in nematic liquid crystal overlayered waveguide,” J. Lightwave Technol. LT-4, 360–363 (1986). [CrossRef]
  22. N. Balasubramanian, A. Subrahmanyam, “Electrical and optical properties of reactively evaporated indium tin oxide (ITO) films—dependence on substrate temperature and tin concentration,” J. Phys. D 22, 206–209 (1989). [CrossRef]
  23. J. L. Yao, S. Hao, J. S. Wilkinson, “Indium tin oxide thin films by sequential evaporation,” Thin Solid Films 189, 227–233 (1990). [CrossRef]
  24. M. Buchanan, J. B. Webb, D. F. Williams, “Preparation of conducting and transparent thin films of tin-doped indium oxide by magnetron sputtering,” Appl. Phys. Lett. 37, 213–215 (1980). [CrossRef]
  25. R. Latz, K. Michael, M. Scherer, “High conducting large area indium tin oxide electrodes for displays prepared by DC magnetron sputtering,” Jpn. J. Appl. Phys. 30, L149–L151 (1991). [CrossRef]
  26. T. Maruyama, K. Tabata, “Indium tin oxide thin films prepared by chemical vapour deposition from metal acetates,” Jpn. J. Appl. Phys. 29, L355–L357 (1990). [CrossRef]
  27. M. Scholten, J. E. A. M. van den Meerakker, “On the mechanism of ITO etching: the specificity of halogen acids,” J. Electrochem. Soc. 140, 471–475 (1993). [CrossRef]
  28. M. A. Martinez, J. Herrero, M. T. Gutiérrez, “Electrochemical stability of indium tin oxide thin films,” Electrochim. Acta 37, 2565–2571 (1992). [CrossRef]
  29. T. C. Nason, J. A. Moore, T.-M. Lu, “Deposition of amorphous fluoropolymer thin films by thermolysis of Teflon amorphous fluoropolymer,” Appl. Phys. Lett. 60, 1866–1868 (1992). [CrossRef]
  30. J. Kane, H. P. Schweizer, “Chemical vapour deposition of transparent electrically conducting layers of indium oxide doped with tin,” Thin Solid Films 29, 155–163 (1975). [CrossRef]
  31. J. A. Dobrowolski, F. C. Ho, D. Menagh, R. Simpson, A. Waldorf, “Transparent, conducting indium tin oxide films formed on low or medium temperature substrates by ion-assisted deposition,” Appl. Opt. 26, 5204–5210 (1987). [CrossRef] [PubMed]
  32. J. A. Woollam, W. A. McGahan, B. Johs, “Spectroscopic ellipsometry studies of indium tin oxide and other flat panel display multilayer materials,” Thin Solid Films 241, 44–46 (1994). [CrossRef]
  33. O. S. Heavens, Optical Properties of Thin Solid Films (Dover, New York, 1965).
  34. R. G. Heideman, R. P. H. Kooyman, J. Greve, “Performance of a highly sensitive optical waveguide Mach-Zehnder interferometer immunosensor,” Sensors Actuators B 10, 209–217 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited