OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 36, Iss. 29 — Oct. 10, 1997
  • pp: 7374–7385

Two-dimensional spectral analysis of mesospheric airglow image data

F. J. Garcia, M. J. Taylor, and M. C. Kelley  »View Author Affiliations

Applied Optics, Vol. 36, Issue 29, pp. 7374-7385 (1997)

View Full Text Article

Enhanced HTML    Acrobat PDF (1789 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A technique to analyze short-period (<1 hour) gravity wave structure in all-sky images of the airglow emissions is described. The technique involves spatial calibration, star removal, geographic projection, regridding, and flat fielding of the data prior to the determination of the horizontal wave parameters (wavelength, velocity, and period), by use of standard two-dimensional Fourier analysis techniques. The method was developed to exploit the information that is now available with wide-field solid state imaging systems. This technique permits interactive and quantitative investigations of large, complex data sets. Such studies are important for investigating gravity wave characteristics, their interaction with the airglow emissions, and their geographic and seasonal variability. We study one event of this type here and present possible evidence of a nonlinear wave–wave interaction in the upper atmosphere.

© 1997 Optical Society of America

Original Manuscript: December 2, 1996
Revised Manuscript: May 29, 1997
Published: October 10, 1997

F. J. Garcia, M. J. Taylor, and M. C. Kelley, "Two-dimensional spectral analysis of mesospheric airglow image data," Appl. Opt. 36, 7374-7385 (1997)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. I. Krassovsky, M. V. Shagayev, “On the nature of internal gravity waves observed from hydroxyl emission,” Planet. Space Sci. 25, 200–201 (1977). [CrossRef]
  2. N. M. Gavrilov, G. M. Shved, “Study of internal gravity waves in the lower thermosphere from observations of the nocturnal sky airglow [OI] 5577 Å in Ashkhabad,” Ann. Geophys. 38, 789–803 (1982).
  3. H. Takahashi, P. P. Batista, Y. Sahai, B. R. Clemesha, “Atmospheric wave propagations in the mesopause region observed by the OH (8,3) band, NaD, O2 (8645 Å) band and OI5577 Å nightglow emissions,” Planet. Space Sci. 43, 381–384 (1985). [CrossRef]
  4. H. K. Myrabø, C. S. Deehr, R. A. Viereck, K. Henriksen, “Polar mesopause gravity waves in the sodium and hydroxyl night airglow,” J. Geophys. Res. 92, 2527–2534 (1987). [CrossRef]
  5. M. J. Taylor, M. A. Hapgood, P. Rothwell, “Observations of gravity wave propagation in the OI (557.7 nm), Na (589.2 nm) and the near-infrared OH nightglow emissions,” Planet. Space Sci. 35, 413–427 (1987). [CrossRef]
  6. R. P. Lowe, K. L. Gilbert, D. N. Turnbull, “High latitude summer observations of the hydroxyl airglow,” Planet. Space Sci. 39, 1263–1270 (1991). [CrossRef]
  7. S. P. Zhang, R. H. Wiens, G. G. Shepard, “Gravity waves from O2 nightglow during the AIDA’89 campaign, II, Numerical modeling of the emission rate/temperature ratio, η,” J. Atmos. Terr. Phys. 54, 377–395 (1992).
  8. J. H. Hecht, R. L. Walterscheid, M. N. Ross, “First measurements of the two-dimensional horizontal wave number spectrum from CCD images of the nightglow,” J. Geophys. Res. 99, 11,449–11,460 (1984). [CrossRef]
  9. G. R. Swenson, S. B. Mende, “OH emissions and gravity waves (including a breaking wave) in all-sky imagery from Bear Lake, Utah,” Geophys. Res. Lett. 21, 2239–2242 (1994). [CrossRef]
  10. P. R. Fagundes, H. Takahashi, Y. Sahai, D. Gobbi, “Observations of gravity waves from multispectral mesospheric nightglow emissions observed at 23 °S,” J. Atmos. Terr. Phys. 57, 359–405 (1995). [CrossRef]
  11. M. J. Taylor, F. J. Garcia, “A two-dimensional spectral analysis of short period gravity waves imaged in the OI (557.7 nm)and near-infrared OH nightglow emissions over Arecibo, Puerto Rico,” Geophys. Res. Lett. 22, 2473–2476 (1995). [CrossRef]
  12. J. R. Holton, An Introduction to Dynamic Meteorology, Vol. 23 of International Geophysical Series (Academic, San Diego, Calif., 1979).
  13. R. R. Garcia, S. Solomon, “The effects of breaking gravity waves on the dynamics and chemical composition of the mesosphere and lower thermosphere,” J. Geophys. Res. 90, 3850–3868 (1985). [CrossRef]
  14. I. M. Reid, R. A. Vincent, “Measurements of the horizontal scales and phase velocities of short period mesospheric gravity waves at Adelaide, Australia,” J. Atmos. Terr. Phys. 49, 1033–1048 (1987). [CrossRef]
  15. D. C. Fritts, T. E. VanZandt, “Spectral estimates of gravity wave energy and momentum fluxes, I: Energy dissipation, acceleration, and constraints,” J. Atmos. Sci. 50, 3685–3694 (1993). [CrossRef]
  16. M. J. Taylor, M. J. Hill, “Near-infrared imaging of hydroxyl wave structure over an ocean site at low latitudes,” Geophys. Res. Lett. 18, 1333–1336 (1991). [CrossRef]
  17. G. R. Swenson, M. J. Taylor, P. J. Espy, C. Gardner, X. Tao, “ALOHA-93 measurements of intrinsic AGW characteristics using airborne airglow imager and groundbased Na Wind/Temperature lidar,” Geophys. Res. Lett. 22, 2841–2844 (1995). [CrossRef]
  18. M. J. Taylor, M. B. Bishop, V. Taylor, “All-sky measurements of short period waves imaged in the OI (557.7 nm), Na (589.2 nm), and near infrared OH and O2 (0,1) nightglow emissions during the ALOHA-93 campaign,” Geophys. Res. Lett. 22, 2833–2836 (1995). [CrossRef]
  19. Q. Wu, T. L. Killeen, “Seasonal dependence of mesospheric gravity waves (100 km) at Peach Mountain Observatory, Michigan,” Geophys. Res. Lett. 23, 2211–2214 (1996). [CrossRef]
  20. A. W. Peterson, L. M. Kieffaber, “Infrared photography of OH airglow structures,” Nature 242, 321–322 (1973). [CrossRef]
  21. G. Moreels, M. Herse, “Photographic evidence of waves around the 85-km level,” Planet. Space Sci. 25, 265–273 (1977). [CrossRef]
  22. J. Crawford, P. Rothwell, M. J. Taylor, “Airglow TV” sidebar in “ASSESS 2: a simulated mission of Spacelab(Review Article),” Nature 275, 17 (1978).
  23. E. B. Armstrong, “The association of visible airglow features with a gravity wave,” J. Atmos. Terr. Phys. 44, 325–336 (1982). [CrossRef]
  24. M. J. Taylor, P. J. Espy, D. J. Baker, R. J. Sica, P. C. Neal, W. R. Pendleton, “Simultaneous intensity, temperature, and imaging measurements of short period structure in the OH nightglow emission,” Planet. Space Sci. 39, 1171–1188 (1991). [CrossRef]
  25. M. A. Hapgood, M. J. Taylor, “Analysis of airglow image data,” Ann. Geophys. 38, 805–813 (1982).
  26. B. S. Lanchester, “Relation between discrete auroral forms and magnetic field disturbances,” Ph.D. dissertation (Department of Physics, University of Southampton, Southampton, UK, 1985).
  27. K. H. Lloyd, “Concise method for photogrammetry of objects in the sky,” , 1971 (Australian Defence Scientific Service, Canberra, Australia).
  28. W. Smart, Spherical Astronomy, 5th ed. (Cambridge U. Press, Cambridge, UK, 1965).
  29. W. H. Press, S. A. Teukolsy, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C (Cambridge U. Press, Campbridge, UK, 1992).
  30. M. J. Taylor, D. C. Fritts, J. R. Isler, “Determination of horizontal and vertical structure of an unusual pattern of short period gravity waves imaged during ALOHA-93,” Geophys. Res. Lett. 22, 2837–2840 (1995). [CrossRef]
  31. D. C. Fritts, J. R. Isler, G. Thomas, O. Andreassen, “Wave breaking signatures in noctilucent clouds,” Geophys. Res. Lett. 20, 2039–2042 (1993). [CrossRef]
  32. E. M. Dewan, R. E. Good, “Saturation and the ‘universal’ spectrum for vertical profiles of horizontal scalar winds in the atmosphere,” J. Geophys. Res. 91, 2742–2748 (1986). [CrossRef]
  33. C. O. Hines, “The saturation of gravity waves in the middle atmosphere, II, Development of Doppler-spread theory,” J. Atmos. Sci. 48, 1360–1379 (1991).
  34. C. S. Gardner, “Diffusive filtering theory of gravity wave spectra in the atmosphere,” J. Geophys. Res. 99, 20,601–20,622 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited