OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 36, Iss. 29 — Oct. 10, 1997
  • pp: 7397–7401

Evaluation of three-dimensional convolutions by use of two-dimensional filtering

Y. B. Karasik  »View Author Affiliations

Applied Optics, Vol. 36, Issue 29, pp. 7397-7401 (1997)

View Full Text Article

Enhanced HTML    Acrobat PDF (229 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A three-dimensional to two-dimensional mapping is proposed that permits the reduction of three-dimensional convolutions–correlations to two-dimensional ones and thereby lays a theoretical foundation for their optical implementation.

© 1997 Optical Society of America

Original Manuscript: February 3, 1997
Revised Manuscript: May 1, 1997
Published: October 10, 1997

Y. B. Karasik, "Evaluation of three-dimensional convolutions by use of two-dimensional filtering," Appl. Opt. 36, 7397-7401 (1997)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. K. Knight, D. I. Klick, D. P. Ryan-Howard, B. K. Theriault, J. R. Tussey, A. M. Beckman, “Three-dimensional imaging using a single laser pulse,” in Laser Radar IV, R. J. Becherer, ed., Proc. SPIE1103, 174–189 (1989).
  2. C. C. Aleksoff, “Interferometric two-dimensional imaging of rotating objects,” Opt. Lett. 1, 54–55 (1977). [CrossRef] [PubMed]
  3. N. H. Farhat, “Holography, wavelength diversity and inverse scattering,” in Optics in Four Dimensions—1980, M. A. Machado, L. M. Narducci, eds. (American Institute of Physics, New York, 1981), pp. 627–642.
  4. J. C. Marron, K. S. Schroeder, “Three-dimensional lensless imaging using laser frequency diversity,” Appl. Opt. 31, 255–262 (1992). [CrossRef] [PubMed]
  5. J. Rose, A. Yariv, “Three-dimensional imaging of random radiation sources,” Opt. Lett. 21, 1011–1013 (1996). [CrossRef]
  6. W. W. Stoner, W. J. Miceli, F. A. Horrigan, “One-dimensional to two-dimensional transformations in signal correlation,” in Transformations in Optical Signal Processing, W. T. Rhodes, J. R. Fienup, B. E. A. Saleh, eds., Proc. SPIE373, 21–30 (1981).
  7. W. T. Rhodes, “The falling raster in optical signal processing,” in Transformations in Optical Signal Processing, W. T. Rhodes, J. R. Fienup, B. E. A. Saleh, eds., Proc. SPIE373, 11–20 (1981).
  8. A. E. Siegman, “Two-dimensional calculations using one-dimensional arrays, or ‘Life on the Skew,’” Comput. Phys. Nov./Dec.74–75 (1988).
  9. J. Hofer-Alfeis, R. Bamler, “Three-dimensional and four-dimensional convolutions by coherent optical filtering,” in Transformations in Optical Signal Processing, W. T. Rhodes, J. R. Fienup, B. E. A. Saleh, eds., Proc. SPIE373, 77–87 (1981).
  10. R. Bamler, J. Hofer-Alfeis, “Three-and four-dimensional filter operations by coherent optics,” Opt. Acta 29, 747–757 (1982). [CrossRef]
  11. A. B. VanderLugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theory IT-10, 139–145 (1964).
  12. D. Casasent, D. Psaltis, “Position-,rotation-, and scale-invariant optical correlator,” Appl. Opt. 15, 1795–1799 (1976). [CrossRef] [PubMed]
  13. D. Asselin, H.-H. Arsenault, “Rotation and scale invariance with polar and log-polar coordinate transformations,” Opt. Commun. 104, 391–404 (1994). [CrossRef]
  14. D. Mendelovic, E. Marom, N. Konforti, “Scale-invariant pattern recognition,” in Optical Computing ’88 (Sept. 1988, Toulon, France), P. Chavel, J. W. Goodman, G. Roblin, eds., Proc. SPIE963, 304–310 (1988). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited