OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 36, Iss. 3 — Jan. 20, 1997
  • pp: 635–641

Directional coupler based on radiatively coupled waveguides

M. Shamonin, M. Lohmeyer, and P. Hertel  »View Author Affiliations

Applied Optics, Vol. 36, Issue 3, pp. 635-641 (1997)

View Full Text Article

Enhanced HTML    Acrobat PDF (622 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate a system of two waveguides with leaky modes sharing a common substrate (radiatively coupled waveguides). The main advantage of such a system is the possibility of remote coupling. A perturbation theory is developed for both TE and TM polarization. Numerical calculations of dispersion curves and of the coupling length allow us to determine the limitations of the perturbation theory. We study the influence of multimode interference on the process of beating by considering the propagation of a given initial field. Finally, we propose a new design for an effective, integrated optical TE–TM polarization splitter.

© 1997 Optical Society of America

Original Manuscript: December 6, 1995
Revised Manuscript: April 29, 1996
Published: January 20, 1997

M. Shamonin, M. Lohmeyer, and P. Hertel, "Directional coupler based on radiatively coupled waveguides," Appl. Opt. 36, 635-641 (1997)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. F. Taylor, “Optical switching and modulation in parallel dielectric waveguides,” J. Appl. Phys. 44, 3257–3262 (1974). [CrossRef]
  2. H. Kogelnik, R. V. Schmidt, “Switched directional couplers with alternating Δβ,” IEEE J. Quantum Electron. QE-12, 396–401 (1976). [CrossRef]
  3. R. C. Alferness, R. V. Schmidt, “Tunable optical waveguide directional coupler filter,” Appl. Phys. Lett. 33, 161–163 (1978). [CrossRef]
  4. R. G. Hunsperger, Integrated Optics: Theory and Technology (Springer-Verlag, Berlin, 1982).
  5. M. A. Duguay, Y. Kokubun, T. L. Koch, L. Pfeiffer, “Antiresonant reflecting optical waveguide in SiO2 -Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986). [CrossRef]
  6. T. Baba, Y. Kokubun, “Dispersion and radiation loss characteristics of antiresonant reflecting optical waveguides—numerical results and analytical expression,” IEEE J. Quantum Electron. 28, 1689–1700 (1992). [CrossRef]
  7. M. Mann, U. Trutschel, C. Wächter, L. Leine, F. Lederer, “Directional coupler based on an antiresonant reflecting optical waveguide,” Opt. Lett. 16, 805–807 (1991). [CrossRef] [PubMed]
  8. F. Lederer, L. Leine, M. Mann, T. Peschel, R. Muschall, U. Trutschel, C. Wächter, C. Carigan, M. A. Duguay, F. Ouelette, “Linear mode beating and nonlinear mode coupling in resonant optical waveguides,” in Integrated Optics and Micro-Optics with Polymers, G. Wegner, W. Karthe, W. Ehrfeld, eds., Vol. 27 of Teubner-Texte zur Physik Series (Teubner-Verlagsgesellschaft, Stuttgart, 1993), pp. 301–331.
  9. V. L. Maslennikov, V. A. Sychugov, A. V. Tishchenko, B. A. Usievich, “Light generation in a system of two coupled waveguides,” Sov. J. Quantum Electron. 22, 1041–1044 (1992). [CrossRef]
  10. S. M. Loktev, V. A. Sychugov, B. A. Usievich, “Propagation of light in a system of two radiatively coupled waveguides,” Sov. J. Quantum Electron. 24, 435–438 (1994). [CrossRef]
  11. M. T. Wlodarczyk, S. R. Seshadri, “Analysis of grating couplers for planar dielectric waveguides,” J. Appl. Phys. 58, 69–87 (1985). [CrossRef]
  12. This means that n* + Re (δnlk) is the effective mode index of a waveguide with leaky mode shown in Fig. 1(b), and α rad is its leakage parameter.
  13. G. J. M. Krijnen, “All-optical switching in nonlinear integrated optic devices, Ph.D. dissertation (University of Twente, Enschede, The Netherlands, 1992).
  14. J. Willems, J. Haes, R. Baets, “The bidirectional mode expansion method for two-dimensional waveguides: the TM case,” Opt. Quantum Electron. 27, 995–1007 (1995). [CrossRef]
  15. Y. Chung, N. Dagli, “An assessment of finite difference beam propagation method,” IEEE J. Quantum Electron. 26, 1335–1339 (1990). [CrossRef]
  16. W. Huang, C. Xu, S.-T. Chu, S. K. Chaudhuri, “The finite-difference vector beam propagation method: analysis and assessment,” J. Lightwave Technol. LT-10, 293–304 (1992).
  17. W. H. Weber, S. L. McCarthy, G. W. Ford, “Perturbation theory applied to gain or loss in an optical waveguide,” Appl. Opt. 13, 715–716 (1974). [CrossRef]
  18. Y. Shani, C. H. Henry, R. C. Kistler, K. J. Orlowsky, “Four-port integrated optic polarization splitter,” Appl. Opt. 29, 337–339 (1990). [CrossRef] [PubMed]
  19. M. Eisenmann, E. Weidel, “Single-mode fused biconical coupler optimized for polarization beamsplitting,” J. Lightwave Technol. 9, 853–858 (1991). [CrossRef]
  20. K. Thyagarajan, S. D. Seshadri, A. K. Ghatak, “Waveguide polarizer based on resonant tunelling,” J. Lightwave Technol. 9, 315–317 (1991). [CrossRef]
  21. K. Thyagarajan, S. Pilevar, “Resonant tunnelling three-waveguide polarization splitter,” J. Lightwave Technol. 10, 1334–1337 (1992). [CrossRef]
  22. U. Trutschel, F. Ouelette, V. Delisle, M. A. Duguay, G. Fogarty, F. Lederer, “Polarization splitter based on antiresonant reflecting optical waveguides,” J. Lightwave Technol. LT-13, 239–243 (1995). [CrossRef]
  23. X. Li, R. T. Deck, “Light polarizer based on antiresonant reflecting layers in a directional coupler,” Appl. Phys. Lett. 66, 130–132 (1995). [CrossRef]
  24. M. Shamonin, A. Erdmann, P. Hertel, “Properties of TE/TM polarized-mode propagation in a system of two radiatively coupled waveguides,” in European Optical Society, Annual Meetings Digest Series, Vol. 2A, Photonics’95 (Czech and Slovak Society for Photonics, Prague, Czechoslovakia, 1995), pp. 170–173.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited