OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 36, Iss. 30 — Oct. 20, 1997
  • pp: 7970–7977

Absorption measurements of the second overtone band of NO in ambient and combustion gases with a 1.8-µm room-temperature diode laser

David M. Sonnenfroh and Mark G. Allen  »View Author Affiliations


Applied Optics, Vol. 36, Issue 30, pp. 7970-7977 (1997)
http://dx.doi.org/10.1364/AO.36.007970


View Full Text Article

Enhanced HTML    Acrobat PDF (310 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe the development of a room-temperature diode sensor for in situ monitoring of combustion-generated NO. The sensor is based on a near-IR diode laser operating near 1.8 µm, which probes isolated transitions in the second overtone (3,0) absorption band of NO. Based on absorption cell data, the sensitivity for ambient atmospheric pressure conditions is of the order of 30 parts in 106 by volume for a meter path (ppmv–m), assuming a minimum measurable absorbance of 10-5. Initial H2 –air flame measurements are complicated by strong water vapor absorption features that constrain the available gain and dynamic range of the present detection system. Preliminary results suggest that detection limits in this environment of the order of 140 ppmv–m could be achieved with optimum baseline correction.

© 1997 Optical Society of America

History
Original Manuscript: February 28, 1997
Revised Manuscript: July 7, 1997
Published: October 20, 1997

Citation
David M. Sonnenfroh and Mark G. Allen, "Absorption measurements of the second overtone band of NO in ambient and combustion gases with a 1.8-µm room-temperature diode laser," Appl. Opt. 36, 7970-7977 (1997)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-36-30-7970


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. G. Allen, W. J. Kessler, “Simultaneous water vapor concentration and temperature measurements using 1.31 µm diode lasers,” AIAA J. 34, 384–488 (1996). [CrossRef]
  2. D. S. Baer, V. Nagali, E. R. Furlong, R. K. Hanson, M. E. Newfield, “Scanned- and fixed-wavelength absorption diagnostics for combustion measurements using multiplexed diode lasers,” AIAA J. 34, 489–493 (1996). [CrossRef]
  3. D. M. Sonnenfroh, M. G. Allen, “Ultrasensitive, visible tunable diode laser detection of NO2,” Appl. Opt. 35, 4053–4058 (1996). [CrossRef] [PubMed]
  4. R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Tunable diode-laser absorption measurements of NO2 near 670 and 395 nm,” Appl. Opt. 35, 4059–4063 (1996). [CrossRef] [PubMed]
  5. V. Nagali, S. I. Chou, D. S. Baer, R. K. Hanson, J. Segall, “Tunable diode-laser absorption measurements of methane at elevated temperatures,” Appl. Opt. 35, 4026–4032 (1996). [CrossRef] [PubMed]
  6. M. F. Miller, W. J. Kessler, M. G. Allen, “Diode laser-based air mass flux sensor for subsonic aeropropulsion inlets,” Appl. Opt. 35, 4905–4912 (1996). [CrossRef] [PubMed]
  7. D. M. Sonnenfroh, M. G. Allen, “Observations of CO and CO2 absorption near 1.57 microns using an external cavity diode laser,” Appl. Opt. 36, 3298–3300 (1997). [CrossRef] [PubMed]
  8. J. A. Silver, D. S. Kane, P. S. Greenberg, “Quantitative species measurements in microgravity flames with near-IR diode lasers,” Appl. Opt. 34, 2787–2801 (1995). [CrossRef] [PubMed]
  9. D. B. Oh, A. C. Stanton, “Measurements of nitric oxide using an antimonide diode laser,” Appl. Opt. 36, 3294–3297 (1997). [CrossRef] [PubMed]
  10. G. A. Mann, C. D. Hause, “Magnetic rotation spectra of nitric oxide in the near infrared,” J. Chem. Phys. 33, 1117–1123 (1960). [CrossRef]
  11. C. Amiot, “The infrared emission spectrum of NO: analysis of the Δv = 3 sequence up to v = 22,” J. Mol. Spectrosc. 94, 150–172 (1982). [CrossRef]
  12. K. W. Holtzclaw, W. T. Rawlins, B. D. Green, “The effects of centrifugal distortion on the infrared radiative transition probabilities of NO (X 2II),” J. Quant. Spectrosc. Radiat. Transfer 55, 481–492 (1996). [CrossRef]
  13. L. S. Rothman, R. B. Watson, R. R. Gamache, D. Goorvetch, R. L. Hawkins, J. E. A. Selby, C. Camy-Peyret, J.-M. Flaud, J. Schroeder, A. McCann, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer (to be published).
  14. P. C. D. Hobbs, “Shot noise limited optical measurements at baseband with noisy laser,” in Laser Noise, R. Roy, ed., Proc. SPIE1376, 216–221 (1991). [CrossRef]
  15. K. L. Haller, P. C. D. Hobbs, “Double beam laser absorption spectroscopy: shot noise-limited performance at baseband with a novel electronic noise canceller,” in Optical Methods for Ultrasensitive Detection and Analysis: Techniques and Applications, B. L. Fearey, ed., Proc. SPIE1435, 298–309 (1991). [CrossRef]
  16. P. C. D. Hobbs, “Ultrasensitive laser measurements without tears,” Appl. Opt. 36, 903–920 (1997). [CrossRef] [PubMed]
  17. M. G. Allen, K. L. Carleton, S. J. Davis, W. J. Kessler, C. E. Otis, D. A. Palombo, D. M. Sonnenfroh, “Ultra-sensitive dual-beam absorption and gain spectroscopy: applications for near-infrared and visible diode laser sensors,” Appl. Opt. 34, 3240–3249 (1995). [CrossRef] [PubMed]
  18. D. T. Cassidy, L. J. Bonnell, “Trace gas detection with short-external-cavity InGaAsP diode laser transmitter modules operating at 1.58 µm,” Appl. Opt. 27, 2688–2693 (1988). [CrossRef] [PubMed]
  19. A. S. Pine, J. W. C. Johns, A. G. Robiette, “Λ-doubling in the v = 2 ← 0 overtone band in the infrared spectrum of NO,” J. Mol. Spectrosc. 74, 52–69 (1979). [CrossRef]
  20. V. Dana, J.-Y. Mandin, L. Coudert, M. Badaoui, F. Le Roy, G. Guelachvili, L. S. Rothman, “Λ-splittings and line intensities in the 2 ← 1 hot band of nitric oxide,” J. Mol. Spectrosc. 165, 525–540 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited