OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 36, Iss. 30 — Oct. 20, 1997
  • pp: 8031–8041

Atmospheric aerosol optical properties: a database of radiative characteristics for different components and classes

Chiara Levoni, Marco Cervino, Rodolfo Guzzi, and Francesca Torricella  »View Author Affiliations


Applied Optics, Vol. 36, Issue 30, pp. 8031-8041 (1997)
http://dx.doi.org/10.1364/AO.36.008031


View Full Text Article

Enhanced HTML    Acrobat PDF (301 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A database management system has been realized that, by taking physical and chemical properties (the complex refractive index and the size distribution) of basic components as its starting point, allows the user to obtain optical properties of default as well as user-defined aerosol classes. Default classes are defined in accordance with the most widely known and used aerosol models. We obtain user-defined classes by varying the mixing ratio of components, creating new mixtures of default components, or by defining user components, thereby supplying the size distribution and the refractive index. The effect of relative humidity (RH) on the refractive index and the size distribution is properly accounted for up to RH = 99%. The two known mechanisms of obtaining classes from components are allowed (internal or external mixing).

© 1997 Optical Society of America

History
Original Manuscript: July 17, 1996
Revised Manuscript: November 18, 1996
Published: October 20, 1997

Citation
Chiara Levoni, Marco Cervino, Rodolfo Guzzi, and Francesca Torricella, "Atmospheric aerosol optical properties: a database of radiative characteristics for different components and classes," Appl. Opt. 36, 8031-8041 (1997)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-36-30-8031


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Twomey, “The influence of pollution on the shortwave albedo of clouds,” J. Atmos. Sci. 34, 1149–1152 (1977). [CrossRef]
  2. E. P. Shettle, R. W. Fenn, “Models for the aerosol lower atmosphere and the effects of humidity variations on their optical properties,” (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1979).
  3. G. A. d’Almeida, P. Koepke, E. P. Shettle, Atmospheric Aerosols. Global Climatology and Radiative Characteristics (Deepak, Hampton, Va.1991).
  4. O. B. Toon, J. B. Pollack, “A global average model of atmospheric aerosol for radiative transfer calculations,” J. Appl. Meteorol. 15, 225–246 (1976). [CrossRef]
  5. R. W. Fenn, “Aerosol-Verteilungen und atmospharisches Streulicht,” Beitr. Phys. Atmos. 37, 69–104 (1964).
  6. A. Deepak, H. E. Gerbers, eds., “Report of the experts’ meeting on aerosols and their climatic effects,” (World Climate Research Program, Geneva, 1983).
  7. World Meteorological Organization, “A preliminary cloudless standard atmosphere for radiation computation,” (World Climate Research Program, CAS, Radiation Commission of IAMAP, Boulder, Colo., 1986).
  8. M. Wang, H. R. Gordon, “Radiance reflected from the ocean-atmosphere system: synthesis from individual components of the aerosol size distribution,” Appl. Opt. 33, 7088–7095 (1994). [CrossRef] [PubMed]
  9. A. M. Ignatov, L. L. Stowe, S. M. Sakerin, G. K. Korotaev, “Validation of the NOAA/NESDIS satellite aerosol product over the North Atlantic in 1989,” J. Geophys. Res. 100, 5123–5132 (1995). [CrossRef]
  10. F. Dulac, D. Tanré, G. Bergametti, P. Buat-Ménard, M. Desbois, D. Sutton, “Assessment of the African airborne dust mass over the western Mediterranean Sea using Meteosat data,” J. Geophys. Res. 97, 2489–2506 (1992). [CrossRef]
  11. J. M. Haywood, K. P. Shine, “The effect of anthropogenic sulfate and soot aerosol on the clear sky planetary radiation budget,” Geophys. Res. Lett. 22, 603–606 (1995). [CrossRef]
  12. M. I. Mishchenko, A. A. Lacis, B. E. Carlson, L. D. Travis, “Nonsphericity of dustlike tropospheric aerosol: implication for aerosol remote sensing and climate modeling,” Geophys. Res. Lett. 22, 1077–1080 (1995). [CrossRef]
  13. F. X. Kneizys, E. P. Shettle, W. O. Gallery, J. H. Chetwind, L. W. Abreu, J. E. A. Selby, S. A. Clough, R. W. Fenn, “Atmospheric transmittance/radiance: the LOWTRAN 6 model,” (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1983).
  14. G. Häanel, “The properties of atmospheric aerosol particles as functions of the relative humidity at thermodynamic equilibrium with the surrounding moist air,” Adv. Geophys. 19, 73–188 (1976). [CrossRef]
  15. G. Häanel, “The physical chemistry of atmospheric particles,” in Hygroscopic Aerosol, L. H. Ruhnke, A. Deepak, eds. (Deepak, Hampton, Va., 1984), pp. 1–20.
  16. E. P. Shettle, Remote Sensing Division, U. S. Naval Research Laboratory, Washington, D.C. 20375 (personal communication, 1996).
  17. D. Deirmendjian, Electromagnetic Scattering on Spherical Polydispersions (Elsevier, New York, 1969), pp. 151–285.
  18. Yu. V. Villevalde, A. V. Smirnov, N. T. O’Neill, S. P. Smyshlyaev, V. V. Yakovlev, “Measurement of aerosol optical depth in the Pacific Ocean and the North Atlantic,” J. Geophys. Res. 99, 20983–20988 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited