OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 36, Iss. 31 — Nov. 1, 1997
  • pp: 8199–8205

Hollow cylindrical waveguides for use as evanescent fluorescence-based sensors: effect of numerical aperture on collected signal

H. Pin Kao and J. S. Schoeniger  »View Author Affiliations

Applied Optics, Vol. 36, Issue 31, pp. 8199-8205 (1997)

View Full Text Article

Enhanced HTML    Acrobat PDF (388 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Hollow cylindrical waveguide sensors permit conventional capillary injection techniques for flowing precise volumes of a liquid sample through the sensor while exciting and collecting fluorescence by use of evanescent fields. Both a ray-optics model and experimental data show that fluorescence collected from bulk or thin-layer fluorescent samples increases strongly as the numerical aperture (N.A.) increases and is maximized when the N.A. of the excitation–collection optics matches the waveguide N.A. The dependence of fluorescence on N.A. closely resembled that reported previously for solid cylindrical waveguides. Mode mixing reduced the strength of this dependence and should be minimized to increase collected fluorescence.

© 1997 Optical Society of America

Original Manuscript: January 27, 1997
Revised Manuscript: April 24, 1997
Published: November 1, 1997

H. Pin Kao and J. S. Schoeniger, "Hollow cylindrical waveguides for use as evanescent fluorescence-based sensors: effect of numerical aperture on collected signal," Appl. Opt. 36, 8199-8205 (1997)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. P. Kao, J. Biwersi, A. S. Verkman, “Fiber optic halide sensor based on fluorescence quenching,” in Fiber Optic Medical and Fluorescent Sensors and Applications, D. R. Hansman, F. P. Milanovich, G. G. Vurek, D. R. Walt, eds., Proc. SPIE1648, 194–201 (1992). [CrossRef]
  2. R. P. Ekins, “Competitive, noncompetitive and multianalyte microspot immunoassays,” in Immunochemistry of Solid-Phase Immunoassay, J. E. Butler, ed. (CRC Press, Boca Raton, Fla., 1991), pp. 105–139.
  3. T. R. Glass, S. Lackie, T. Hirschfeld, “Effect of numerical aperture on signal level in cylindrical waveguide evanescent fluoresensors,” Appl. Opt. 26, 2181–2187 (1987). [CrossRef] [PubMed]
  4. J. D. Andrade, R. A. Van Wagenan, D. E. Gregonis, K. Newby, J. N. Lin, “Remote fiber-optic biosensors based on evanescent-excited fluoro-immunoassay: concept and progress,” IEEE Trans. Electron Devices 32, 1175–1179 (1985). [CrossRef]
  5. B. H. Weigl, O. S. Wolfbeis, “Capillary optical sensors,” Anal. Chem. 66, 3323–3327 (1994). [CrossRef]
  6. O. S. Wolfbeis, “Capillary waveguide sensors,” Trends Anal. Chem. 15, 225–232 (1996). [CrossRef]
  7. N. J. Harrick, Internal Reflection Spectroscopy (Wiley, New York, 1967), pp. 13–63.
  8. R. W. Boyd, Radiometry and the Detection of Optical Radiation (Wiley, New York, 1983).
  9. C. K. Carniglia, L. Mandel, K. H. Drexhage, “Absorption and emission of evanescent photons,” J. Opt. Soc. Am. 62, 479–486 (1972). [CrossRef]
  10. E.-H. Lee, R. E. Benner, J. B. Fenn, R. K. Change, “Angular distribution of fluorescence from liquids and monodispersed spheres by evanescent wave excitation,” Appl. Opt. 18, 862–868 (1979). [CrossRef]
  11. W. F. Love, L. J. Button, “Optical characteristics of optic evanescent wave sensors,” in Chemical, Biochemical and Environmental Applications of Fibers, R. A. Lieberman, ed., Proc. SPIE990, 175–180 (1988). [CrossRef]
  12. P. Evennett, “Kohler illumination: a simple interpretation,” Proc. R. Microsc. Soc. 28, 10–13 (1994).
  13. R. C. Weast, ed., CRC Handbook of Chemistry and Physics, 67th ed. (CRC Press, Boca Raton, Fla., 1986).
  14. E. H. Hellen, D. Axelrod, “Fluorescence emission at dielectric and metal-film interfaces,” J. Opt. Soc. Am. B 4, 337–350 (1987). [CrossRef]
  15. J. D. Kraus, Electromagnetics, 3rd ed. (McGraw-Hill, New York, 1984).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited