OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 36, Iss. 32 — Nov. 10, 1997
  • pp: 8455–8458

Sensitivity of the fractional Fourier transform to parameters and its application in optical measurement

Zhiping Jiang, Qisheng Lu, and Yijun Zhao  »View Author Affiliations


Applied Optics, Vol. 36, Issue 32, pp. 8455-8458 (1997)
http://dx.doi.org/10.1364/AO.36.008455


View Full Text Article

Enhanced HTML    Acrobat PDF (180 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The fractional Fourier transform (FRT) is becoming important in optics and can be used as a new tool to analyze many optical problems. However, we point out that the FRT might be much more sensitive to parameters than the conventional Fourier transform. This sensitivity leads to higher requirements on the optical implementation. On the other hand, high parametric sensitivity can be used in optical diffraction measurements. We give the first proposal, to our knowledge, of the FRT’s applications in optical measurement.

© 1997 Optical Society of America

History
Original Manuscript: February 21, 1997
Revised Manuscript: May 7, 1997
Published: November 10, 1997

Citation
Zhiping Jiang, Qisheng Lu, and Yijun Zhao, "Sensitivity of the fractional Fourier transform to parameters and its application in optical measurement," Appl. Opt. 36, 8455-8458 (1997)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-36-32-8455


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. Namias, “The fractional Fourier transform and its application in quantum mechanics,” J. Inst. Math. Its Appl. 25, 241–265 (1980). [CrossRef]
  2. D. Mendlovic, H. M. Ozaktas, “Fractional Fourier transforms and their optical implementation: I,” J. Opt. Soc. Am. A 10, 1875–1881 (1993). [CrossRef]
  3. H. M. Ozaktas, D. Mendlovic, “Fourier transforms of fractional order and their optical interpretation,” Opt. Commun. 101, 163–169 (1993). [CrossRef]
  4. H. M. Ozaktas, D. Mendlovic, “Fractional Fourier transforms and their optical implementation: II,” J. Opt. Soc. Am. A 10, 2522–2531 (1993). [CrossRef]
  5. A. W. Lohmann, “Image rotation, Wigner rotation, and the fractional Fourier transform,” J. Opt. Soc. Am. A 10, 2181–2186 (1993). [CrossRef]
  6. H. M. Ozaktas, B. Barshan, D. Mendlovic, L. Onural, “Convolution, filtering, and multiplexing in fractional Fourier domains and their relation to chirp and wavelet transforms,” J. Opt. Soc. Am. A 11, 547–559 (1994). [CrossRef]
  7. D. Mendlovic, H. M. Ozaktas, A. W. Lohmann, “Graded index fibers, Wigner-distribution functions, and the fractional Fourier transforms,” Appl. Opt. 33, 6188–6193 (1994). [CrossRef] [PubMed]
  8. Z. Jiang, “Scaling law and simultaneous optical implementation of various-order fractional Fourier transforms,” Opt. Lett. 20, 2408–2410 (1995). [CrossRef]
  9. Y. B. Karasik, “Expression of the kernel of a fractional Fourier transform in elementary functions,” Opt. Lett. 19, 769–770 (1994). [CrossRef] [PubMed]
  10. D. Mendlovic, H. M. Ozaktas, A. W. Lohmann, “Fractional correlation,” Appl. Opt. 34, 303–309 (1995). [CrossRef] [PubMed]
  11. L. M. Bernardo, O. D. D. Soares, “Fractional Fourier transforms and imaging,” J. Opt. Soc. Am. A 11, 2622–2626 (1994). [CrossRef]
  12. H. M. Ozaktas, D. Mendlovic, “Fractional Fourier transforms as a tool for analyzing beam propagation and spherical mirror resonators,” Opt. Lett. 19, 1678–1680 (1994). [CrossRef] [PubMed]
  13. R. G. Dorsch, A. W. Lohmann, Y. Bitran, D. Mendlovic, H. M. Ozaktas, “Chirp filtering in the fractional Fourier domain,” Appl. Opt. 11, 7599–7602 (1994). [CrossRef]
  14. P. Pallat-Finet, “Fresnel diffraction and the fractional-order Fourier transform,” Opt. Lett. 19, 1388–1390 (1994). [CrossRef]
  15. P. Pallat-Finet, G. Bonnet, “Fractional order Fourier transform and Fourier optics,” Opt. Commun. 111, 141–154 (1994). [CrossRef]
  16. A. W. Lohmann, “A fake zoom lens for fractional Fourier experiments,” Opt. Commun. 115, 437–443 (1995). [CrossRef]
  17. H. M. Ozaktas, D. Mendolovic, “Fractional Fourier optics,” J. Opt. Soc. Am. A 12, 743–751 (1995). [CrossRef]
  18. R. G. Dorsch, A. W. Lohmann, Y. Bitran, D. Mendlovic, H. M. Ozaktas, “Chirp filtering in the fractional Fourier domain,” Appl. Opt. 33, 7599–7602 (1994). [CrossRef] [PubMed]
  19. R. G. Dorsch, A. W. Lohmann, “Fractional Fourier transform used for a lens-design problem,” Appl. Opt. 34, 4111–4112 (1995). [CrossRef] [PubMed]
  20. Y. Bitran, Z. Zalevsky, D. Mendlovic, R. G. Dorsch, “Fractional correlation operation: performance analysis,” Appl. Opt. 35, 297–303 (1996). [CrossRef] [PubMed]
  21. X. Deng, Y. Li, Y. Qiu, D. Fan, “Diffraction interpreted through fractional Fourier transforms,” Opt. Commun. 131, 241–245 (1996). [CrossRef]
  22. Z. Zalevsky, D. Mendlovic, R. G. Dorsch, “Gerchberg-Saxton algorithm applied in the fractional Fourier or the Fresnel domain,” Opt. Lett. 21, 842–844 (1996). [CrossRef] [PubMed]
  23. Z. Zalevsky, D. Mendlovic, “Fractional Radon transform: definition,” Appl. Opt. 35, 4628–4631 (1996). [CrossRef] [PubMed]
  24. D. Dragoman, “Fractional Wigner distribution function,” J. Opt. Soc. Am. A 13, 474–478 (1996). [CrossRef]
  25. Z. Zalevsky, D. Mendlovic, “Fractional Wiener filter,” Appl. Opt. 35, 3930–3936 (1996). [CrossRef] [PubMed]
  26. S. A. Collins, “Lens-system diffraction integral written in terms of matrix optics,” J. Opt. Soc. Am. 60, 1168–1177 (1970). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited