OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 36, Iss. 32 — Nov. 10, 1997
  • pp: 8493–8503

Optically produced true-time delays for phased antenna arrays

Betty Lise Anderson, Stuart A. Collins, Elizabeth A. Beecher, Charles A. Klein, and Stephen B. Brown  »View Author Affiliations

Applied Optics, Vol. 36, Issue 32, pp. 8493-8503 (1997)

View Full Text Article

Acrobat PDF (460 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A device is described for generating true-time delays optically for microwave signals used in beam steering and beam shaping in phased-array antennas. The device can be adapted to provide delays from picoseconds to nanoseconds. A single, compact unit should provide parallel delays for more than 64 independent antenna elements with a greater than 6-bit resolution. The time delays are produced by multiple reflections in a mirror configuration with continuous refocusing. A single spatial light modulator selects independent optical path lengths for each of the parallel antenna elements. Amplitude control for beam shaping can be integrated into the device. The unit can be made rugged for harsh environments by use of solid-block construction. The operation of the true-time delay device is described, along with the overall system configuration. Preliminary experimental data are given.

© 1997 Optical Society of America

Betty Lise Anderson, Stuart A. Collins, Elizabeth A. Beecher, Charles A. Klein, and Stephen B. Brown, "Optically produced true-time delays for phased antenna arrays," Appl. Opt. 36, 8493-8503 (1997)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. J. J. Lee, R. Y. Loo, S. Livingston, V. I. Jones, J. B. Lewis, H.-W. Yen, G. L. Tangonan, and M. Wechsberg, “Photonic wideband array antennas,” IEEE Trans. Antennas Prop. 45, 966–982 (1995).
  2. A. Goutzoulis, K. Davies, J. Zomp, P. Hyrcak, and A. Johnson, “Development and field demonstration of a hardware-compressive fiber-optic true-time-delay steering system for phased-array antennas,” Appl. Opt. 33, 8173–8185 (1994).
  3. P. M. Freitag and S. M. Forrest, “A coherent optically controlled phased array antenna system,” IEEE Microwave Guided Wave Lett. 3, 293–295 (1993).
  4. G. A. Ball, W. H. Glenn, and W. W. Morey, “Programmable fiber optic delay line,” IEEE Photon. Technol. Lett. 6, 741–743 (1994).
  5. B. Kanack, M. Boysel, C. Goldsmith, C. Menni, G. Magel, and C. Takle, “Optical time delay network for phased arrays,” in Transition of Optical Processors into Systems, D. P. Casasent, ed., Proc. SPIE 1958, 114–132 (1993).
  6. D. D. Curtis and L. M. Sharpe, “True time delay using fiber optic delay lines,” in Proceedings of the IEEE International Symposium Antennas and Propagation (Institute of Electrical and Electronics Engineers, New York, 1990), pp. 766–769.
  7. R. D. Esman, M. Y. Frankel, J. L. Dexter, L. Goldberg, M. G. Parent, and D. Stilwell, “Two optical-control techniques for phased array: interferometric and dispersive-fiber true time delay,” Transition of Optical Processors into Systems, D. P. Casasent, ed., Proc. SPIE 1958, 133–143 (1993).
  8. D. J. Page, “An introduction to the optical commutator,” IEEE Trans. Antennas Prop. 44, 652–658 (1996).
  9. D. A. Cohen, Y. Chang, A. G. J. Levi, H. R. Fetterman, and I. L. Newberg, “Optically controlled serially fed phased array sensor,” IEEE Photon. Technol. Lett. 8, 1683–1685 (1996).
  10. N. A. Riza, “Polarization-based fiber optic delay lines,” Optical Technology for Microwave Applications VII, A. P. Goutzoulis, ed., Proc. SPIE 2560, 120–129 (1995).
  11. N. A. Riza and N. Madamopoulos, “Phased-array antenna, maximum compression, reversible photonic beam former with ternary designs and multiple wavelengths,” Appl. Opt. 36, 983–996 (1997).
  12. H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Steier, and G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guided Wave Lett. 5, 414–416 (1995).
  13. D. Dolfi, P. Joffre, J. Antoine, J. P. Huignard, J. Roger, and P. Granger, “Two-dimensional optical beam-forming networks,” Optoelectronic Signal Processing for Phased-Array Antennas IV, B. Hendrikson, ed., Proc. SPIE 2155, 205–217 (1994).
  14. X. S. Yao and L. Maleki, “A novel 2-D programmable photonic time-delay device for millimeter-wave signal processing applications,” IEEE Photon. Technol. Lett. 6, 1463–1465 (1994).
  15. N. A. Riza, “Transmit–receive time-delay beam-forming optical architecture for phased-array antennas,” Appl. Opt. 30, 4594–4595 (1991).
  16. D. Dolfi, J. P. Huignard, and M. Baril, “Optically controlled true time delays for phased array antenna,” Optical Technology for Microwave Applications IV, S.-K. Yao, ed., Proc. SPIE 1102, 152 (1989).
  17. J. White, “Long optical paths of large aperture,” J. Opt. Soc. Am. 32, 285–288 (1942).
  18. J. U. White, “Very long optical paths in air,” J. Opt. Soc. Am. 66, 411–416 (1976).
  19. E. O. Schulz-DuBois, “Generation of square lattice of focal points by a modified White cell,” Appl. Opt. 12, 1391–1393 (1973).
  20. E. J. Beiting, “Compact optical pulse train generator,” Appl. Opt. 31, 2642–2644 (1992).
  21. J. J. B. Deaton and J. W. Wagner, “Variable-cavity-length mode-locked Nd:YAG laser for noncontact and spectral control of narrow-band ultrasound,” Appl. Opt. 33, 1051–1058 (1994).
  22. M. J. Ehrlich, J. S. Steckenrider, and J. W. Wagner, “System for high-speed time-resolved holography of transient events,” Appl. Opt. 31, 5947–5951 (1992).
  23. S. A. Collins, Jr., J. Ambue, and E. K. Damon, “Optics for numerical calculation,” in Proceedings of International Commission on Optics 11 Madrid, Spain (International Commission on Optics, 1978).
  24. T. R. Reesor, “The astigmatism of a multiple path absorption cell,” J. Opt. Soc. Am. 41, 1059–1060 (1951).
  25. W. H. Kohn, “Astigmatism and White cells: theoretical considerations on the construction of an anastigmatic White cell,” Appl. Opt. 31, 6757–6764 (1992).
  26. G. J. Rayl, “Multiple traversal absorption cell of minimum volume design,” Appl. Opt. 15, 921–928 (1976).
  27. U. Effron, Spatial Light Modulator Technology (Marcel Dekker, New York, 1995).
  28. N. Collings, J. Gourlay, D. G. Vaasl, H. J. White, C. Stace, and G. M. Proudley, “Measurements on ferroelectric liquid-crystal spatial light modulators: contrast ratio and speed,” Appl. Opt. 34, 5928–5931 (1995).
  29. M. G. Roe and K. L. Schehrer, “High-speed and high-contrast operation of ferroelectric liquid crystal optically addressed spatial light modulators,” Opt. Eng. 32, 1662–1667 (1993).
  30. A. Handschy, K. M. Johnson, G. Moddel, and L. A. Pagano-Stauffer, “Electro-optic applications of ferroelectric liquid crystal to optical computing,” Ferroelectrics 85, 279–289 (1988).
  31. Diplaytech Inc., product literature (Boulder, Colo., 1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited