OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 36, Iss. 33 — Nov. 20, 1997
  • pp: 8533–8540

Visible intracavity laser spectroscopy with a step-scan Fourier-transform interferometer

Kimberly Strong, Timothy J. Johnson, and Geoffrey W. Harris  »View Author Affiliations

Applied Optics, Vol. 36, Issue 33, pp. 8533-8540 (1997)

View Full Text Article

Enhanced HTML    Acrobat PDF (332 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A Fourier-transform spectrometer has been used in a step-scan mode to make time-resolved measurements of the evolving laser pulse in intracavity laser spectroscopy (ILS) experiments. Spectra of broadband dye laser pulses at approximately 615 nm were recorded at relatively high spectral (0.5-cm−1) and temporal (as high as 5-μs) resolution. In the absence of an absorber, the height of the pulse is shown to be proportional to tg0.57 (where tg is the generation time) for generation times as high as 500 μs. The system was constructed for feasibility studies of future use at infrared and near-infrared wavelengths where conventional ILS that uses diode arrays would be either expensive or simply not possible. The CH4 overtone transition at 619.68 nm was used to test the linearity and sensitivity of the system. Comparable performance to conventional ILS systems was demonstrated, as were the advantages of the present system for studies of laser and absorption dynamics.

© 1997 Optical Society of America

Original Manuscript: March 4, 1997
Revised Manuscript: July 21, 1997
Published: November 20, 1997

Kimberly Strong, Timothy J. Johnson, and Geoffrey W. Harris, "Visible intracavity laser spectroscopy with a step-scan Fourier-transform interferometer," Appl. Opt. 36, 8533-8540 (1997)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. A. Garetz, J Lombardi, eds., Advances in Laser Spectroscopy, Vol. 2 (Wiley, New York, 1983).
  2. P. R. Griffiths, Chemical Infrared Fourier Transform Spectroscopy (Wiley, New York, 1975).
  3. P. Biggs, G. Hancock, D. Heard, R. P. Wayne, “A stop-scan interferometer used for time-resolved FTIR emission spectroscopy,” Meas. Sci. Technol. 1, 630–636 (1990). [CrossRef]
  4. G. Hancock, D. E. Heard, “Time-resolved pulsed FTIR emission studies of atom-radical reactions: product chemiluminescence from the O(3P) + CF2(X1A1) reaction,” Chem. Phys. Lett. 158, 167–171 (1989). [CrossRef]
  5. R. A. Palmer, C. J. Manning, J. A. Rzepiela, J. M. Widder, J. L. Chao, “Time-resolved spectroscopy using step-scan Fourier transform interferometry,” Appl. Spectrosc. 43, 193–195 (1989). [CrossRef]
  6. G. V. Hartland, W. Xie, H.-L. Dai, A. Simon, M. J. Anderson, “Time-resolved Fourier transform spectroscopy with 0.25 cm-1 spectral and 10-7 s time resolution in the visible region,” Rev. Sci. Instrum. 63, 3261–3267 (1992). [CrossRef]
  7. G. V. Hartland, D Qin, H.-L. Dai, “Fourier transform dispersed fluorescence spectroscopy: observation of new vibrational levels in the 5000-8000 cm-1 region of ã 1A1 CH2,” J. Chem. Phys. 98, 2469–2472 (1993), and references therein. [CrossRef]
  8. T. J. Johnson, A. Simon, J. M. Weil, G. W. Harris, “Applications of time-resolved step-scan and rapid-scan FT-IR spectroscopy: dynamics from ten nanoseconds to ten seconds,” Appl. Spectrosc. 47, 1376–1381 (1993). [CrossRef]
  9. W. Uhmann, A. Becker, C. Taran, F. Siebert, “Time-resolved FT-IR absorption spectroscopy using a step-scan interferometer,” Appl. Spectrosc. 45, 390–397 (1991). [CrossRef]
  10. W Hage, M Kim, H Frei, R. A. Mathies, “Protein dynamics in the bacteriorhodopsin photocycle: a nanosecond step-scan FTIR investigation of the KL to L transition,” J. Phys. Chem. 100, 16026–16033 (1996), and references therein. [CrossRef]
  11. S. Plunkett, J. L. Chao, T. J. Tague, R. A. Palmer, “Time-resolved step-scan FTIR spectroscopy of the photodynamics of carbonmonoxymyoglobin,” Appl. Spectrosc. 49, 702–708 (1995). [CrossRef]
  12. C. Peterson, M. J. Kurylo, W. Braun, A. M. Bass, R. A. Keller, “Enhancement of absorption spectra by dye-laser quenching,” J. Opt. Soc. Am. 61, 746–750 (1971). [CrossRef]
  13. A. Pakhomycheva, E. A. Sviridenkov, A. F. Suchkov, L. V. Titova, S. S. Churilov, “Line structure of generation spectra of lasers with inhomogeneous broadening of the amplification,” JETP Lett. 12, 43–45 (1970).
  14. V. M. Baev, I. N. Sarkisov, E. A. Sviridenkov, A. F. Suchkov, “Intracavity laser spectroscopy,” J. Sov. Laser Res. 10, 61–85 (1989). [CrossRef]
  15. J. Thrash, H. von Weyssenhoff, J. S. Shirk, “Dye laser amplified absorption spectroscopy of flames,” J. Chem. Phys. 55, 4659–4660 (1971). [CrossRef]
  16. H. Atkinson, A. H. Laufer, M. J. Kurylo, “Detection of free radicals by an intracavity dye laser technique,” J. Chem. Phys. 59, 350–354 (1973). [CrossRef]
  17. H. Clark, C. B. Moore, J. P. Reilly, “HCO radical kinetics: conjunction of laser photolysis and intracavity dye laser spectroscopy,” Int. J. Chem. Kinet. 10, 427–431 (1978). [CrossRef]
  18. N. Goldstein, T. L. Brack, G. H. Atkinson, “Quantitative absorption spectroscopy of NO2 in a supersonically cooled jet by intracavity laser techniques,” Chem. Phys. Lett. 116, 223–230 (1985). [CrossRef]
  19. V. S. Burakov, “Development of intracavity laser spectroscopy,” J. Appl. Spectrosc. 35, 843–854 (1981). [CrossRef]
  20. T. D. Harris, “Laser intracavity-enhanced spectroscopy,” in Ultrasensitive Laser Spectroscopy, D. S. Kliger, ed. (Academic, New York, 1983), pp. 343–367.
  21. S. J. Harris, “Intracavity laser spectroscopy: an old field with new prospects for combustion diagnostics,” Appl. Opt. 23, 1311–1318 (1984). [CrossRef] [PubMed]
  22. P. V. Cvijin, W. K. Wells, I. Mendas, J. K. Delaney, J. I. Lunine, D. M. Hunten, G. H. Atkinson, “Determination of line intensity and pressure broadening of the 619.68 nm methane overtone absorption line at low temperatures using intracavity laser spectroscopy,” J. Quant. Spectrosc. Radiat. Transfer 49, 639–650 (1993). [CrossRef]
  23. B. B. Radak, J. I. Lunine, D. M. Hunten, G. H. Atkinson, “The intensity and pressure broadening of the 681.884 nm methane absorption line at low temperatures determined by intracavity laser spectroscopy,” J. Quant. Spectrosc. Radiat. Transfer 52, 809–818 (1994). [CrossRef]
  24. S. Cheskis, “Intracavity laser absorption spectroscopy detection of HCO radicals in atmospheric pressure hydrocarbon flames,” J. Chem. Phys. 102, 1851–1854 (1995). [CrossRef]
  25. J. B. McManus, C. E. Kolb, “Long-path intracavity laser for the measurement of atmospheric trace gases,” in Measurement of Atmospheric Gases, H. I. Schiff, ed., Proc. SPIE1433, 340–351 (1991). [CrossRef]
  26. D. A. Gilmore, P. V. Cvijin, G. H. Atkinson, “Intracavity absorption spectroscopy with a titanium:sapphire laser,” Opt. Commun. 77, 385–389 (1990). [CrossRef]
  27. D. A. Gilmore, P. V. Cvijin, G. H. Atkinson, “Intracavity laser spectroscopy in the 1.38-1.55 μm spectral region using a multimode Cr4+:YAG laser,” Opt. Commun. 103, 370–374 (1993). [CrossRef]
  28. V. R. Mironenko, V. I. Yudson, “Quantum noise in intracavity laser spectroscopy,” Opt. Commun. 34, 397–403 (1980). [CrossRef]
  29. M. Chenevier, M. A. Melieres, F. Stoeckel, “Intracavity absorption line shapes and quantitative measurements on O2,” Opt. Commun. 45, 385–391 (1983). [CrossRef]
  30. S. J. Harris, A. M. Weiner, “Continuous wave intracavity dye laser spectroscopy. II. A parametric study,” J. Chem. Phys. 74, 3673–3679 (1981). [CrossRef]
  31. E. N. Antonov, A. A. Kachanov, V. R. Mironenko, T. V. Plakhotnik, “Dependence of the sensitivity of intracavity laser spectroscopy on generation parameters,” Opt. Commun. 46, 126–130 (1983). [CrossRef]
  32. F. Stoeckel, G. H. Atkinson, “Time evolution of a broadband quasi-cw dye laser: limitations of sensitivity in intracavity laser spectroscopy,” Appl. Opt. 24, 3591–3597 (1985). [CrossRef] [PubMed]
  33. V. M. Baev, T. P. Belikova, S. A. Kovalenko, E. A. Siridenkov, A. F. Suchkov, “Transient processes manifested in the emission spectra of c.w. wide-band dye lasers used for intracavity laser spectroscopy,” Sov. J. Quantum Electron. 101, 517 (1980). [CrossRef]
  34. P. V. Cvijin, J. J. O’Brien, G. H. Atkinson, W. K. Wells, J. I. Lunine, D. M. Hunten, “Methane overtone absorption by intracavity laser spectroscopy,” Chem. Phys. Lett. 159, 331–336 (1989). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited