OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 36, Iss. 33 — Nov. 20, 1997
  • pp: 8601–8605

Chromium-doped forsterite laser with 1.1 W of continuous-wave output power at room temperature

Nickolay Zhavoronkov, Aleksander Avtukh, and Victor Mikhailov  »View Author Affiliations


Applied Optics, Vol. 36, Issue 33, pp. 8601-8605 (1997)
http://dx.doi.org/10.1364/AO.36.008601


View Full Text Article

Enhanced HTML    Acrobat PDF (273 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate stable continuous-wave operation of a Cr:forsterite laser pumped by a cw Nd:YAG laser at 288 K. We use no choppers to limit the duty cycle of the cw system. The proper adjustment of the pump- and cavity-mode overlap based on the ABCD concept simulation eliminates the output power decrease at the high-level pump power. An output power of 1.1 W and slope efficiency of 26% are derived.

© 1997 Optical Society of America

History
Original Manuscript: February 6, 1997
Revised Manuscript: June 26, 1997
Published: November 20, 1997

Citation
Nickolay Zhavoronkov, Aleksander Avtukh, and Victor Mikhailov, "Chromium-doped forsterite laser with 1.1 W of continuous-wave output power at room temperature," Appl. Opt. 36, 8601-8605 (1997)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-36-33-8601


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. G. Baryshevski, M. V. Korzhik, A. E. Kimaev, M. G. Livshitz, V. B. Pavlenko, M. L. Milman, B. I. Minkov, “Tunable chromium forsterite laser in the near IR region,” J. Appl. Spectrosc. (USSR) 53, 675–676 (1990). [CrossRef]
  2. A. Sennaroglu, C. R. Pollock, H. Nathel, “Generation of tunable femtosecond pulses in the 1.21–1.27 μm and 605–635 nm wavelength region by using regeneratively initiated self-mode-locked Cr-forsterite laser,” IEEE J. Quantum Electron. 30, 1851–1861 (1994). [CrossRef]
  3. V. Yanovsky, Y. Pang, F. Wise, B. I. Minkov, “Generation of 25-fs pulses from a self-mode-locked Cr-forsterite laser,” Opt. Lett. 18, 1541–1543 (1993). [CrossRef]
  4. A. Seas, V. Petričević, R. R. Alfano, “Continuous-wave mode-locked operation of a chromium-doped forsterite laser,” Opt. Lett. 16, 1668–1670 (1991). [CrossRef] [PubMed]
  5. A. Sennaroglu, T. J. Carrig, C. R. Pollock, “Femtosecond pulse generation by using additive-pulse mode-locked chromium-doped forsterite laser operated at 77 K,” Opt. Lett. 17, 1216–1218 (1992). [CrossRef] [PubMed]
  6. T. J. Carrig, C. R. Pollock, “Performance of a continuous-wave forsterite laser with krypton ion, Ti-sapphire, and YAG:Nd pump lasers,” IEEE J. Quantum Electron. 29, 2835–2844 (1993). [CrossRef]
  7. V. F. Kamalov, A. P. Lifanov, B. I. Minkov, E. V. Slobodchikov, “Femtosecond forsterite Kerr-lens mode-locked laser pumped synchronously by an YAG:Nd laser,” Quantum Electron. 23, 5–11 (1996).
  8. A. A. Ivanov, B. I. Minkov, G. Jonusauskas, J. Oberle, C. Rulliere, “Influence of Cr+4 ion concentration on cw operation of forsterite laser and its relation to thermal problems,” Opt. Commun. 116, 131–135 (1995). [CrossRef]
  9. V. Petricevic, A. Seas, R. R. Alfano, “Slope efficiency measurement of a chromium-doped forsterite laser,” Opt. Lett. 16, 811–813 (1991). [CrossRef]
  10. U. O. Farrukh, A. M. Buoncristiani, C. E. Byuik, “An analysis of the temperature distribution in finite solid-state laser rod,” IEEE J. Quantum Electron. 24, 2253–2263 (1988). [CrossRef]
  11. M. E. Innocenzi, H. I. Yura, C. L. Fincher, R. Feilds, “Thermal modeling of continuous-wave end-pumped solid state lasers,” Appl. Phys. Lett. 56, 1831–1833 (1990). [CrossRef]
  12. M. Abramavitz, I. A. Stegun, eds., Handbook of Mathematical Function (Dover, New York, 1972), p. 229.
  13. A. Sennaroglu, A. Asker, F. M. Atay, “Laser beam propagation in thermally loaded absorber,” in Advanced Solid-State Lasers, S. A. Payne, C. R. Pollock, eds., Vol. 1 of 1996 OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996) pp. 222–225.
  14. W. M. Koechner, Solid-State Laser Engineering, 2nd ed. (Springer-Verlag, Heidelberg, Germany, 1988), pp. 51, 359.
  15. V. G. Baryshevski, M. V. Korzhik, M. G. Livshitz, A. A. Tarasov, A. E. Kimaev, J. I. Mishkel, M. L. Melman, B. J. Minkov, A. P. Shkadarevich, “Properties of forsterite and the performance of forsterite lasers with lasers and flashlamp pumping,” in Advanced Solid-State Lasers, G. Dube, L. C. Chase, eds., Vol. 10 of OSA Proceedings (Optical Society of America, Washington, D.C., 1991), pp. 26–34.
  16. A. Penzkofer, M. Wittmann, M. L. Orenz, E. Siegert, S. Macnamara, “Kerr-lens effect in a folded-cavity four-mirror linear resonator,” Optic. Quantum Electron. 28, 423–442 (1996). [CrossRef]
  17. H. W. Kogelnik, E. P. Ippen, A. Dienes, C. V. Shank, “Astigmatically compensated cavity for cw dye lasers,” IEEE J. Quantum Electron. QE-8, 373–379 (1972). [CrossRef]
  18. J. F. Cormier, M. Piche, F. Salin, “Suppression of beam breakup in self-mode-locked Ti-sapphire lasers,” Opt. Lett. 19, 1225–1227 (1994). [CrossRef] [PubMed]
  19. A. S. Avtukh, N. I. Zhavoronkov, V. P. Mikhailov, “Efficient chromium-doped forsterite laser with gain switching,” Quantum Electron. 27, 129–131 (1997). [CrossRef]
  20. N. V. Kuleshov, V. G. Shcherbitsky, V. P. Mikhailov, S. Hartung, T. Danger, S. Kuck, K. Petermann, G. Huber, “Excited-state absorption measurements in Cr+4-doped Mg2SiO4 and Y2SIO5 laser materials,” in Advanced Solid-State Lasers, S. A. Payne, C. R. Pollock, eds., Vol. 1 of 1996 OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996) pp. 85–89.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited