OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 36, Iss. 33 — Nov. 20, 1997
  • pp: 8626–8631

Laser initiation and beam quality evolution in a confocal unstable resonator, short-pulse-duration laser

Theodore F. Ewanizky  »View Author Affiliations

Applied Optics, Vol. 36, Issue 33, pp. 8626-8631 (1997)

View Full Text Article

Enhanced HTML    Acrobat PDF (273 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The subjects of laser initiation and beam quality evolution in short-pulse-duration systems that employ confocal unstable resonators motivated this work. Experimentation and analysis of the performance of a laser-pumped, organic dye laser are presented. Combined results indicate that a saturation flux arises through a coalescence of stabilized, diverging-mode components of the initially emitted fluorescence. The ABCD law method was used to devise calculational techniques that clearly demonstrate the particular mechanisms responsible for rapid mode stabilization, subsequent beam quality development, and laser initiation.

© 1997 Optical Society of America

Original Manuscript: February 3, 1997
Published: November 20, 1997

Theodore F. Ewanizky, "Laser initiation and beam quality evolution in a confocal unstable resonator, short-pulse-duration laser," Appl. Opt. 36, 8626-8631 (1997)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. I. Zemskov, A. A. Isaev, M. A. Kazaryan, G. G. Petrash, S. G. Rautian, “Use of unstable resonators in achieving the diffraction divergence of the radiation emitted from high-gain pulsed gas lasers,” Sov. J. Quantum Electron. 4, 474–477 (1974). [CrossRef]
  2. T. F. Ewanizky, “An unstable-resonator flashlamp-pumped dye laser,” Appl. Phys. Lett. 25, 295–297 (1974). [CrossRef]
  3. T. F. Ewanizky, “Negative-branch unstable resonator Nd:YAG laser,” Appl. Opt. 15, 1465–1469 (1976). [CrossRef] [PubMed]
  4. T. F. Ewanizky, W. T. Bayha, R. S. Rohde, “A double-ended, unstable resonator submillimeter laser,” IEEE J. Quantum Electron. QE-15, 538–540, (1979). [CrossRef]
  5. Y. A. Anen’ev, “Establishment of oscillations in unstable resonators,” Sov. J. Quantum Electron. 5, 615–617 (1975). [CrossRef]
  6. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Section 22.2.
  7. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), pp. 897–898.
  8. H. Kogelnik, T. Li, “Laser beams and resonators,” Appl. Opt. 5, 1550–1567 (1966). [CrossRef] [PubMed]
  9. M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, London, 1970), pp. 416–417.
  10. M Born, E Wolf, “Aberrated laser beams,” in Principles of Optics, 6th ed. (Pergamon, London, 1970), Section 18.2.
  11. Y. A. Anen’ev, G. N. Vinokurov, L. V. Koval’chuk, N. A. Svensitskaya, V. E. Sherstobitov, “Telescopic-resonator laser,” Sov. Phys. JETP 31, 420–424 (1970).
  12. T. F. Ewanizky, “Ray-transfer-matrix approach to unstable resonator analysis,” Appl. Opt., 18, 724–727 (1979). [PubMed]
  13. W. F. Krupke, W. R. Sooy, “Properties of an unstable confocal resonator CO2 laser system,” IEEE J. Quantum Electron. QU-5, 575–586 (1969). [CrossRef]
  14. V. A. Alekseev, B. F. Trinchuk, A. V. Shulenin, “Properties of unstable resonators used in lamp-pumped lasers on the basis of solutions of organic compounds,” J. Appl. Spectrosc. 41, 748–752 (1984). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited