OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 36, Iss. 33 — Nov. 20, 1997
  • pp: 8632–8638

Atmospheric-turbulence-induced power-fade statistics for a multiaperture optical receiver

Aniceto Belmonte, A. Comerón, J. A. Rubio, J. Bará, and E. Fernández  »View Author Affiliations


Applied Optics, Vol. 36, Issue 33, pp. 8632-8638 (1997)
http://dx.doi.org/10.1364/AO.36.008632


View Full Text Article

Enhanced HTML    Acrobat PDF (653 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

To estimate the probability distributions of power fades, we consider two basic types of disturbance in electromagnetic wave propagation through atmospheric turbulence: wave-front intensity fluctuations and wave-front distortion. We assess the reduction in the cumulative probability of losses caused by these two effects through spatial diversity by using a multiaperture receiver configuration. Degradations in receiver performance are determined with fractal techniques used to simulate the turbulence-induced wave-front phase distortion, and a log normal model is assumed for the collected power fluctuations.

© 1997 Optical Society of America

History
Original Manuscript: October 30, 1996
Revised Manuscript: March 11, 1997
Published: November 20, 1997

Citation
Aniceto Belmonte, A. Comerón, J. A. Rubio, J. Bará, and E. Fernández, "Atmospheric-turbulence-induced power-fade statistics for a multiaperture optical receiver," Appl. Opt. 36, 8632-8638 (1997)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-36-33-8632


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. E. Hufnagel, “Propagation through atmospheric turbulence,” in Infrared Handbook (Office of Naval Research, Department of the Navy, Arlington, Va., 1978).
  2. D. L. Fried, “Statistics of a geometric representation of wavefront distortion,” J. Opt. Soc. Am. 55, 1427–1435 (1965). [CrossRef]
  3. S. Rosenberg, M. C. Teich, “Photocounting array receivers for optical communication through the lognormal atmospheric channel. 2: Optimum and suboptimum receiver performance for binary signaling,” Appl. Opt. 12, 2625–2635 (1973). [CrossRef] [PubMed]
  4. J. H. Churnside, M. C. McIntyre, “Averaged threshold receiver for direct detection of optical communications through the lognormal atmospheric channel,” Appl. Opt. 16, 2669–2676 (1977). [CrossRef] [PubMed]
  5. A. Belmonte, A. Comerón, J. Bará, J. A. Rubio, “Averaging of collected-power fluctuations by a multiaperture receiver system,” Opt. Eng. 35, 2775–2778 (1996). [CrossRef]
  6. A Belmonte, A Comerón, J. Bará, J. A. Rubio, E. Fernández, P. Menéndez–Valdés, “The impact of the point-spread function on the performance of a multiple-aperture optical ground station,” in Atmospheric Propagation and Remote Sensing IV, J. C. Dainty, ed. Proc. SPIE2471, 324–334 (1995).
  7. D. L. Fried, “Aperture averaging of scintillation,” J. Opt. Soc. Am. 57, 169–175 (1967). [CrossRef]
  8. V. I. Tatarski, Wave Propagation in a Turbulent Medium (Dover, New York, 1967).
  9. J. C. Dainty, B. M. Levine, B. K. Brames, K. A. O’Donnell, “Measurements of the wavelength dependence and other properties of stellar scintillation at Mauna Kea, Hawaii,” Appl. Opt. 21, 127–145 (1978).
  10. S. H. Reiger, “Starlight scintillations and atmospheric turbulence,” Astron. J. 68, 395–406 (1963). [CrossRef]
  11. E. Jakeman, G. Parry, E. R. Pike, P. N. Pusey, “The twinkling of stars,” Contemp. Phys. 19, 127–145 (1978). [CrossRef]
  12. A Belmonte, “Effects of the atmospheric turbulence on the propagation of electromagnetic waves,” (in Spanish), Ph.D. dissertation (Polytechnic University of Catalonia, Barcelona, Spain, 1995).
  13. H. T. Yura, W. G. McKinley, “Optical scintillation statistics for IR ground-to-space laser communication systems,” Appl. Opt. 22, 3353–3358 (1983). [CrossRef] [PubMed]
  14. B. L. McGlamery, “Computer simulation studies of compensation of turbulence degraded images,” in Image Processing (Pacific Grove), J. C. Urbach, ed., Proc. SPIE74, 225–233 (1976). [CrossRef]
  15. N. Roddier, “Atmospheric wavefront simulation using Zernike polynomials,” Opt. Eng. 29, 1174–1180 (1990). [CrossRef]
  16. C. Schwartz, G. Baum, E. N. Ribak, “Turbulent-degraded wave fronts as fractal surfaces,” J. Opt. Soc. Am. A 11, 444–451 (1994). [CrossRef]
  17. R. G. Lane, A. Glindemann, J. C. Dainty, “Simulation of a Kolmogorov phase screen,” Waves Random Media 2, 209–224 (1992). [CrossRef]
  18. R. J. Noll, “Zernike polynomials and atmosphere turbulence,” J. Opt. Soc. Am. 66, 207–211 (1976). [CrossRef]
  19. H. O. Peitgen, D. Saupe, eds., The Science of Fractal Images (Springer–Verlag, New York, 1988).
  20. J. W. Goodman, Statistical Optics (Wiley, New York, 1985).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited